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ABSTRACT 

In this paper, we consider the general quasi-differential expressions 1 2, , , n    each of order n  with complex coef- 

ficients and their formal adjoints on the interval  , .a b  It is shown in direct sum spaces  2 , 1,2, ,w pL I p N   of 

functions defined on each of the separate intervals with the cases of one and two singular end-points and when all solu- 

tions of the equation 
1

0
n

jj
w u 


     and its adjoint 

1
0

n

jj
w v 


     are in  2 ,wL a b  (the limit circle 

case) that all well-posed extensions of the minimal operator  0 1 2, , , nT     have resolvents which are Hilbert- 

Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solv- 
able operators have all the standard essential spectra to be empty. These results extend those of formally symmetric ex- 
pression   studied in [1-10] and those of general quasi-differential expressions   in [11-19]. 
 
Keywords: Product of Quasi-Differential Expressions; Regular and Singular Endpoints; Regularly Solvable Operators; 

Essential Spectra; Hilbert-Schmidt Integral Operators 

1. Introduction 

The operators which fulfill the role that the self-adjoint 
and maximal symmetric operators play in the case of a 
formally symmetric expression   are those which are 
regularly solvable with respect to the minimal operators 

 0T   and  0T    generated by a general ordinary 
quasi-differential expression   and its formal adjoint 
   respectively, the minimal operators  0T   and 
 0T    form an adjoint pair of closed, densely-defined  

operators in the underlying 2
wL -space, that is  

   0 0T T 


    . Such an operator S  satisfies  

   0 0T S T 


      and for some  , the ope- 

rator  S I  is a Fredholm operator of zero index, 

this means that S  has the desirable Fredholm property 
that the equation  S I u f   has a solution if and 
only if f  is orthogonal to the solution space of 
  0S I u   and furthermore the solution space of 
  0S I u   and   0S I v    have the same fi- 
nite dimension. This notion was originally due to Visik 
[20]. 

Akhiezer and Glazman [1] and Naimark [2] are show- 
ed that the self-adjoint extension S  of the minimal op- 
erator  0T   generated by a formally symmetric dif- 
ferential expression   with maximal deficiency indices 
have resolvents which are Hilbert-Schmidt integral ope- 
rators and consequently have a wholly discrete spectrum. 
In [15,16,18,19] Ibrahim extend their results for general 
ordinary quasi-differential expression   of n-th order 
with complex coefficients in the singular case. 

In [3,8] Everitt and Zettl considered the problem of in- 
tegrable square solutions of products of differential ex- 
pressions 1 2, , , n    and investigate the relationship 
between the deficiency indices of general symmetric dif- 
ferential expressions 1 2, , , n    and those of the prod- 

uct expression 
1

n

jj


  and in [17] Ibrahim considered  

the problem of the point spectra and regularity fields for 
products of a general quasi-differential operators.  

Our objective in this paper is a generalization of the 
results in [6,7,15,16,18,19] for the product quasi-differ-  

ential operators    0 01 1
,

n n

j jj j
T T  

    and their spec-  

tra in direct sum spaces  2 , 1,2, ,w pL I p N   of func- 
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tions defined on each of the separate intervals with the 
cases of one and two singular end-points and when all  

solutions of the product equations 
1

0
n

jpj
w u 


     

and 
1

0
n

jpj
w v 


     are in  2

w pL I  for some  

(and hence all C  . The end-points of pI  assumed to 
be regular or may be singular. 

We deal throughout this paper with a quasi-differential 
expression   of arbitrary order n  defined by Shin- 
Zettl matrices [14], and the minimal operator  0T   ge- 
nerated by  1 .w   in  2 ,wL I  where w  is a positive 
weight function on the underlying interval .I  The end- 
points a  and b  of I  may be regular or singular end- 
points. 

2. Notation and Preliminaries 

We begin with a brief survey of adjoint pairs of operators 
and their associated regularly solvable operators; a full 
treatment may be found in [2,7,11, Chapter III], [12, 
15,16,18]. The domain and range of a linear operator T  
acting in a Hilbert space H  will be denoted by  D T  
and  R T  respectively and  N T  will denote its null 
space. The nullity of T , written  ,nul T  is the dimen- 
sion of  N T  and the deficiency of T , written 

  ,def T  is the co-dimension of  R T  in H ; thus if 
T  is densely defined and  R T  is closed, then 

   .def T null T   The Fredholm domain of T  is (in 
the notation of [13]) the open subset  3 T  of   
consisting of those values of    which are such that 
 T I  is a Fredholm operator, where I  is the iden- 
tity operator in H . Thus  3 T  if and only if 
 T I  has closed range and finite nullity and defi- 
ciency. The index of  T I  is the number  

     ind T I nul T I def T I       , this being  
defined for  3 .T   

Two closed densely defined operators A  and B  ac- 
ting in a Hilbert space H  are said to form an adjoint 
pair if A B  and, consequently, B A ; equivalent- 
ly,  , ( , )Ax y x By  for all  x D A  and  y D B , 
where  .,.  denotes the inner-product on H . 

Definition 2.1: The field of regularity  Π A  of A  
is the set of all    for which there exists a positive 
constant  K   such that 

     for a ,llA I x K x x D A         (2.1) 

or, equivalently, on using the Closed Graph Theorem, 
  0nul A I   and  R A I  is closed. 

The joint field of regularity  Π ,A B  of A  and B  
is the set of    which are such that  Π ,A  

 Π B   and both  def A I  and  def B I  
are finite. An adjoint pair A  and B  is said to be com- 
patible if  Π ,A B  . 

Definition 2.2: A closed operator S  in H  is said 

to be regularly solvable with respect to the compatible 
adjoint pair of A  and B  if A S B   and  
   4Π ,A B S   , where  
      4 3: , 0 .S S ind S I        

Definition 2.3: The resolvent set  S  of a closed 
operator S  in H  consists of the complex numbers   
for which   1

S I   exists, is defined on H  and is 
bounded. The complement of  S  in   is called the 
spectrum of S  and written  S . The point spectrum 

  ,p S  continuous spectrum  c S  and residual spec- 
trum  r S  are the following subsets of  S  (see 
[11,15], and [16]). 

      is not inje v: cti ep S S S I      , i.e., the 
set of eigenvalues of S ;  

     
    

is injective,:

;

c S S S I

R S I R S I H

   

 

  

  
 

 
      is inject: iv .e,

r S

S S I R S I H



       
 

For a closed operator S  we have, 

       .p c rS S S S            (2.2) 

An important subset of the spectrum of a closed den- 
sely defined operator S  in H  is the so-called essential 
spectrum. The various essential spectra of S  are defin- 
ed as in [11, Chapter 9] to be the sets: 

     , 1,2,3,4,5 ,ek kS S k          (2.3) 

where  3 S  and  4 S  have been defined earlier. 
Definition 2.4: For two closed densely defined opera- 

tors A  and B  acting in H , if A S B   and the 
resolvent set  S  of S  is nonempty (see [11,12]), 
S  is said to be well-posed with respect to A  and B . 

Note that, if A S B   and  S   then 
 Π A  and    ΠS B     so that if  

 def A I  and  def B I  are finite, then A  
and B  are compatible, in this case S  is regularly sol- 
vable with respect to A  and .B  The terminology “re- 
gularly solvable” comes from Visik’s paper [20], while 
the notion of “well posed” was introduced by Zhikhar in 
his work on J -self adjoint operators in [21].  

Given two operators A  and B  both acting in a Hil- 
bert space H , we wish to consider the product operator 
AB . This is defined as follows 

      
     

|

and for all .

D AB x D B Bx D A

AB x A Bx x D AB

  

 
    (2.4) 

It may happen in general that  D AB  contains only 
the null element of .H  However, in the case of many 
differential operators the domains of the product will be 
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dense in H . 
The next result gives conditions under which the defi- 

ciency of a product is the sum of the deficiencies of the 
factors. It is a generalization of that in [3, Theorem A] 
and [8]. 

Lemma 2.5 (cf. [17, Lemma 2.3]). Let A  and B  
be closed operators with dense domains in a Hilbert 
space H . Suppose that  Π , .A B  Then AB  is a 
closed operator with dense domain and 

     .def AB I def A I def B I          (2.5) 

Evidently Lemma 2.5 extends to the product of any fi- 
nite number of operators 1 2, , , nA A A . 

3. Quasi-Differential Expressions in Direct  
Sum Spaces 

The quasi-differential expressions are defined in terms of 
a Shin-Zettl matrix pF  on an interval pI . The set 

 n pZ I  of Shin-Zettl matrices on pI  consists of 
n n -matrices  , 1,2, ,p

p rsF f p N   , whose entries 
are complex-valued functions on pI  which satisfy the 
following conditions: 

   
 
 

2

, 1

, 1 , , 2

0, 1 1a.e., on

a.e.,0, , 2 1 , 1,2,n , .o

p
rs loc p

p
r r p

p
rs p

f L I r s n n

f I r n

f I r s n p N



   

   

      

 

(3.1) 
For  p n pF Z I , the quasi-derivatives associated 

with pF  are defined by: 
 

        

      

 

0

1 1 1
, 1

1

1 1

1

: ,

: , 1 1

: ,

r
r r sp p

r r rs
s

n
n n np

rs
s

y y

y f y f y r n

y y f y

  




 





      
 

   
 





, 

(3.2) 
where the prime '  denotes differentiation. 

The quasi-differential expression p  associated with 

pF  is given by: 

     . : , 2 ,nn
p i y n              (3.3) 

this being defined on the set: 

      1: : , 1,2, , ,

1,2, ,

r
p loc pV y y AC I r n

p N

   






 

where   ,loc pAC I  denotes the set of functions which 
are absolutely continuous on every compact  subinterval 
of pI .  

The formal adjoint p
  of p  is defined by the ma-

trix pF   given by:  

     for all. : , ,nn
p pi y y V  

          (3.4) 

      1: : , 1,2, , ,

1, 2, ,

r
p loc pV y y AC I r n

p N

 
  






 

where  1ry 
 , the quasi-derivatives associated with the 

matrix pF   in  n pZ I ,  

    1

1, 1 for each an1 d,
r sp p

p rs n s n rF f f r s
  

      . (3.5) 

Note that:  p pF F
   and so  p p 

  . We refer 
to [3,9] and [17-20] for a full account of the above and 
subsequent results on quasi-differential expressions. 

For  pu V  ,  pv V    and , pI   , we have 
Green’s formula, 

    
     

d

, , , 1, 2, , ,

p

p

b

p pa

p p

v u u v x

u v b u v a p N

  

  




   (3.6) 

where, 

            

      
 

 

1
1 1

0

1 1

1

, 1

, , , ;

n
r s r n rn

r

n n
n n

n

u v x i u x v x

v

i u u u J x

v


   










   
 

 
 

    
 
 



 
 (3.7) 

see [4,9] and [14-18]. Let the interval pI  have end- 
points pa ,   ,p p pb a b      and let :p pw I     

be a non-negative weight function with  1
p loc pw L I   

and 0pw   (for almost all px I ). Then  
 2

pp w pH L I  denotes the Hilbert function space of 
equivalence classes of Lebesgue measurable functions 
such that 

2

p
pI

w f   ; the inner-product is defined 
by: 

     

  2

, : d

,  . 1,2, , .

p

p

pp I

w p

f g w f x g x x

f g L I p N



 




    (3.8) 

The equation  

   0 on , 1,2, , ,p p pu w u I p N         (3.9) 

is said to be regular at the left end-point pa  , if for 
all  ,p pX a b ,  

 
 

1, , , ,

, 1, 2, , ; 1,2, , .

p
p p rs pa w f L a X

r s n p N

 

  


 

Otherwise (3.9) is said to be singular at pa . If (3.9) is 
regular at both end-points, then it is said to be regular; in 
this case we have, 

 
 

1, , , , ,

, 1, 2, , ; 1, 2, , .

p
p p p rs p pa b w f L a b

r s n p N
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We shall be concerned with the case when pa  is a 
regular end-point of (3.9), the end-point pb  being al- 
lowed to be either regular or singular. Note that, in view 
of (3.5), an end-point of pI  is regular for (3.9), if and 
only if it is regular for the equation, 

   0 on , 1,2, , ,p p pv w v I p N          (3.10) 

Note that, at a regular end-point pa , say,  
        1 1r r

p pu a v a 
 , 1,2, ,r n   is defined for all  

 pu V     pv V   . Set:  

        

        

1 2

1 2

: : ,  and , ,

1,2, ,

: : ,  and , ,

1,2, , .

p

p

p p p p w p p

p p p p w p p

D u u V u w u L a b

p N

D v v V v w v L a b

p N

  

  



   

  



  







 

(3.11) 

The subspaces  pD   and  pD    of  2 ,
pw p pL a b   

are domains of the so-called maximal operators  pT   
and  pT    respectively, defined by: 

   1: ,p p pT u w u     pu D   and  

   1: ,p p pT v w v       pv D   . 

For the regular problem the minimal operators 
 0 pT   and  0 , 1,2, ,pT p N     are the restrictions 

of  1
p pw u  and  1

p pw v   to the subspaces:  

  

 
          

 
          

0

1 1

0

1 1

:

: , , 1, 2, ,

:

: , , 1, 2, , ,

p

r r
p p p

p

r r
p p p

D

u u D u a u b p N

D

v v D v a v b p N









 



 
 



  



  





  

(3.12) 

respectively. The subspaces  0 pD   and  0 pD    are  

dense in  2 ,
pw p pL a b  and  0 pT   and  0 pT    are  

closed operators (see [2,5,9, Section 3], [11,13,16]). 
In the singular problem we first introduce the opera- 

tors  0 pT   and    0 0;p pT T    being the restriction  

of  1 .p pw   to the subspace:  

 
      

0

: : , , , 1, 2, ,

p

p p p

D

u u D supp u a b p N







    
 

(3.13) 

and with  0 pT    defined similarly. These operators are  

densely-defined and closable in  2 ,
pw p pL a b ; and we  

define the minimal operators  0 pT   and  0 pT    to be 

their respective closures (see [12,13,16,19]). We denote 
the domains of  0 pT   and  0 pT    by  

 0 pD   and  0 pD    respectively. It can be shown 
that: 

     
 

     
 

1
0

1
0

0,

1, 2, , ; 1,2, , ,

0,

1, 2, , ; 1,2, ,

r
p p

r
p p

u D u a

r n p N

v D v a

r n p N










  

 

  

 

 

 

     (3.14) 

because we are assuming that pa  is a regular end-point. 
Moreover, in both regular and singular problems, we 
have  

       0 0 0, , 1,2, , ;p p p pT T T T p N           (3.15) 

see [8, Section 5] in the case when p p    and com- 
pare with treatment in [11, Section III.10.3] and [16] in 
general case. 

In the case of two singular end-points, the problem on 
 ,p pa b  is effectively reduced to the problems with one 
singular end-point on the intervals  ,p pa c   and ,p pc b ,  

where  ,p p pc a b . We denote by  ;p pT a  and 

 ;p pT b  the maximal operators with domains  

 ;p pD a  and  ;p pD b  and denote  0 ;p pT a  and 

 0 ;p pT b  the closures of the operators  0 ;p pT a  and 

 0 ;p pT b  defined by: 

 
      

0 ;.

: : ;. , , , 1, 2, ,

p

p p p

D

u u D supp u a b p N







    
 

(3.16) 

on the intervals  ,p pa c   and ,p pc b  respectively, see  

([2,5,9,11,13] and [16]). Let  0 , 1,2, ,pT p N   , be  

the orthogonal sum as: 
     0 0 0; ;p p p p pT T a T b       in 

     2 2 2, , , , 1,2, , ,
p p pw p p w p p w p pL a b L a c L c b p N     

 0 pT   is densely-defined and closable in 
 2 ,

pw p pL a b  and its closure is given by: 

     0 0 0; ; , 1,2, , .p p p p pT T a T b p N        

Also, 

 
   

0

0 0; ; ,

p

p p p p

null T I

null T a I null T b I

 

   

  
         


 

 
   

0

0 0; ;

p

p p p p

def T I

def T a I def T b I
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and  0 pR T I   
  is closed if and only if  

 0 ;p pR T a I     and  0 ;p pR T b I     are both  

closed. These results imply in particular that, 

     0 0 0Π Π ; Π ; ,

1, 2, , .

p p p p pT T a T b

p N

            


 


 

We refer to [11, Section 3.10.14], [16] and [18] for 
more details. 

Remark 3.1: If pa
pS  is a regularly solvable extension 

of  0 ;p pT a  and pb
pS  is a regularly solvable exten- 

sion of  0 ;p pT b , then  1
p pa bN

p p pS S S    is a re-  

gularly solvable extension of  0T  . We refer to [11, 
Section 3.10.4], [16] and [18] for more details. 

Next, we state the following results; the proof is simi-
lar to that in [10], [11, Section 3.10.4], [16] and [18]. 

Theorem 3.2:    0 0 ,p pT T    

     0 0; ;p p p p pT T a T b     and 

    0 0dim , 1,2, , .p pD T D T n p N        
   

If    0 3 0Π p pT T I           
   , then 

 
   

0

0 0; ; ,

p

p p p p

ind T I

n def T a I def T b I

 

   

  
          

 

and in particular, if  0Π pT      ,  

 
   

0

0 0; ; .

p

p p p p

def T I

def T a I def T b I n

 

   

  
          

 

Remark 3.3: It can be shown that 

 
      

 
      

0

1
0

0

1
0

:

: , 0, 1, 2, ,

: : , 0, 1,2, , ;

p

r
p p

p

r
p p

D T

u u D T u c p N

D T

v v D T v c p N
















     

 
 

 

 

    










 

(3.17) 
see [11, Section 3.10.4]. 

Let H  be the direct sum,  

 2
1 1 , .

p

N N
p p p w p pH H L a b     

The elements of H  will be denoted by  
 1 2, , , Nf f f f   with 1 1f H ,  

2 2 , , .N Nf H f H    
Remark 3.4:  
When , ; , 1,2, ,i jI I i j i j N     , the direct 

sum space  2
1 ,

p

N
p w p pL a b  can be naturally identified  

with the space  2

1

N

w pp
L I

 , where pw w  on ,pI   

1, 2, ,p N  . This remark is of significance when  

 1

N

pp
I

 , may be taken as a single interval, see [15]  

and [17]. 
We now establish by [8,10,11,13,15] and [18] and 

some further notations, 

       
       

0 1 0 1

0 1 0 1

, ,

, ,

N N
p p p p

N N
p p p p

D D D D

D D D D

   

   

 

   
 

   

   
 (3.18) 

        0 0 1 1 0 2 2 0, , , ;N NT f T f T f T f    

     1 0 1 2 0 2 0, , , ,N Nf D f D f D       

        
     

0 0 1 1 0 2 2 0

1 0 1 2 0 2 0

, , , ;

, , , .

N N

N N

T g T g T g T g

g D g D g D

   

  

   

  



  




 

Also, 

        1 1 2 2, , , ;N NT f T f T f T f      

     1 1 2 2, , , ,N Nf D f D f D       

        1 1 2 2, , , ;N NT g T g T g T g         

     1 1 2 2, , , .N Ng D g D g D        

We summarize a few additional properties of  0T   
in the form of a Lemma.  

Lemma 3.5: We have, 

i)      0 1 0 1 ,N N
p p p pT T T  

 
 

             

       0 1 0 1 .N N
p p p pT T T  

 
 

 
                

In particular,  

     0 1 ,N
p pD T D T T  

  


             

     0 1 .N
p pD T D T T  



     

  
  

2)    0 01

N

pp
null T I null T I   


        , 

      0 01
.

N

pp
null T I null T I    


           

3) The deficiency indices of  0T   are given by: 

   0 01

N

pp
def T I def T I   


          

for all  0Π pT     , 

   0 01

N

pp
def T I def T I    


           

for all  0Π .pT       

Proof: Part (a) follows immediately from the defini-
tion of  0T   and from the general definition of an ad-
joint operator. The other parts are either direct conse-
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quences of part (a) or follow immediately from the defi- 
nitions. 

Lemma 3.6: For    0 0Π ,T T       ,  

   0 0def T I def T I            is constant and  

   0 00 2  .def T I def T I nN              

In the problem with one singular end-point, 

   0 0 2 ,nN def T I def T I nN               

for all    0 0Π , .T T         

In the regular problem, 

   0 0 2 ,def T I def T I nN             

for all    0 0Π , .T T        

Proof: The proof is similar to that in [10, Lemma 2.4], 
[17] and [19] and therefore omitted. 

Lemma 3.7: Let    0 1 0
N
p pT T    be a closed 

densely-defined operator on H . Then, 

   0 01
Π

N

pp
T T 


       

Proof: The proof follows from Lemma 3.5 and since 
 0R T I     is closed if and only if  0 pR T I    , 

1,2, ,p N   are closed. 
Remark 3.8: If , 1,2, ,pa

pS p N   is a regularly 
solvable extension of  0 ;p pT a  is a regularly solvable  

extension of pb
pS  then  0 ;p pT b  is regularly solvable 

extension of  1
p pa bN

p p pS S S   . We refer to [10,11,  

16] and [19] for more details. 

4. The Product Operators 

The proof of general theorems will be based on the re-
sults in this section. We start by listing some properties 
and results of quasi-differential expressions 1 2, , , n   . 
For proofs the reader is referred to [3,8,10,17] and [19], 
and  

   
 

1 2 1 2 1 2 2 1,

for a complex n ber.

,

um

       

  

    

 

   


   (4.1) 

A consequence of Properties (4.1) is that if     
then     P P 

   for P any polynomial with com- 
plex coefficients. Also we note that the leading coeffi- 
cients of a product are the product of the leading coeffi- 
cients. Hence the product of regular differential expres- 
sions is regular. 

Lemma 4.1: (cf. [19, Theorem 1]). Suppose j  is a 
regular differential expression on the interval  ,a b  and  

   0 1 2 0 1 2Π ,n nT T            , then we have,  

1) The product operator  01

n

jj
T 

  is closed, den- 
sely-defined, and 

   0 011
,

n n

j jjj
def T I def T I   


           

   0 011
–

n n

j jjj
def T I def T I    


        . 

2)    0 1 2 01

n

n jj
T T   


     and  

   0 1 2 01
.

n

n jj
T T    


      

Note in part (ii) that the containment may be proper, 
i.e., the operators  0 1 2 nT     and  01

n

jj
T 


    

are not equal in general. 
Lemma 4.2: Let 1 2, , , n    be a regular differential 

expressions on  ,a b  and suppose that  

   0 1 2 0 1 2Π ,n nT T            . Then 

   0 1 2 01

n

n jj
T T   


                (4.2) 

if and only if the following partial separation conditions 
are satisfied: 

      12 , , , ,s
w locf L a b f AC a b  where s is the order 

of product expression  1 2 n    and  1 2 n     
 2 ,wf L a b  together imply that:  

     2

1
, , 1, , 1

k

j wj
f L a b k n 


    .   (4.3) 

Furthermore    0 1 2 01

n

n jj
T T   


     and  

   0 1 2 01

n

n jj
T T    


     if and only if , 

   0 1 2 01
,

n

n jj
def T I def T I     


         

   0 1 2 01

n

n jj
def T I def T I      


         . 

We will say that the product 1 2, , , n    is partially 
separated expressions in  2 ,wL a b  whenever Property 
(4.3) holds. 

Lemma 4.3: For  

   0 1 2 0 1 2 Π ,n nT T             we have,  

   

   
0 1 2 0 1 2

0 01 1

Π ,

Π , .

n n

n n

j jj j

T T

T T

     

 




 

 
 
         

 
    (4.4) 

Proof: Let    0 1 2 0 1 2 Π ,n nT T            ,  

then from definition of the field of regularity we have 

 0 1 2Π nT        and  0 1 2Π ,nT         i.e.,  

each of the operators  0 1 2 nT     and  0 1 2 nT      
has closed range and densely-defined on H  with finite 
deficiency indices. Consequently by Lemma 4.2 each of  

the operators  01

n

jj
T I 


    and  
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 01

n

jj
T I 


    has closed range and their defici- 

ency indices are finite, i.e.,  

   0 01 1
Π

n n

j jj j
T T   

 
          . The rest of the  

proof follows from definition and Lemma 4.2. 
Corollary 4.4: Let j  is be a regular differential ex-

pression on  ,a b  for 1,2, ,j n   If all solutions of 
the differential equation  – 0j I u    and  
 – 0j I v    on  ,a b  are in  2 ,wL a b  for  

1,2, ,j n   and   ; then all solutions of  

1
– 0

n

jj
I u 


 
    and  1

– 0
n

jj
I v 


  on  

 ,a b  are in  2 ,wL a b  for all   . 
Proof: Let jn n  = order of j = order of j

  for 
1,2, ,j n  . Then by Lemma 2.5, we have 

   0 0def T I def T I n              

for all    0 0Π ,T T       .  

Hence, by Lemma 4.1, we have,  

 

 
   

0 1 2

2
0 11

1 2 1 2order of orde  of .r

n

n n

j jjj

n n

def T I

def T I n n

   

 

     








  



   



 






 

Thus    0 2 1 1 2order ofn ndef T I               
and consequently all solutions of the equations  

1
– 0

n

jj
I u 


 
    and  1

– 0
n

jj
I v 


  are in  

 2 , .wL a b  Repeating this argument with j
  replaced 

by ,j  we conclude that all solutions of  

 1
– 0

n

jj
I v 


  are in  2 ,wL a b . 

The special case of Corollary 4.4 when j   for 
1,2, ,j n   and   is symmetric was established in [9]. 

In this case it is easy to see that the converse also holds. 
If all solutions of  – 0n I u    are in  2 ,wL a b , then 
all solutions of  – 0I u    must be in  2 ,wL a b . In 
general, if all solutions of  1 2 0n I u        are 
in  2 , ,wL a b  then all solutions of  – 0n I u    are in 

 2 ,wL a b  since these are also solutions of  
 1 2 0n I u       . If all solutions of the adjoint  

equation  1 2 0n I v        are also in  2 ,wL a b ,  

then it follows similarly that all solutions of  
 – 0j I v    are in  2 ,wL a b . 

Let   2, , 1,2, ,k t k n     be the solutions of the 
homogeneous equation 

 1
– 0

n

jj
I u  


            (4.5) 

satisfying    1
0 , 1,k

j k rt  
  for all  0 ,t a b   

 2 2, 1,2, , , 0,1, , 1j k n r n     for fixed  

0 0,t a t b  . Then    ,r
j t   is continuous in  ,t   

for , ,a t b      and for fixed t  it is entire in .  
Let   2, , 1,2, ,k t k n     denote the solutions of the 
adjoint homogeneous equation 

   1
– 0

n

jj
I v  


            (4.6) 

satisfying        20 ,
, 1

r k r

k k n r
t  


   for all  

   2 2
0 , , 1,2, , , 0,1, , 1 .t a b j k n r n      

Suppose a c b   By [8], a solution of the product 
equation 

   1

1
– , ,

n

j wj
I u wf f L a b  


        (4.7) 

satisfying     20, 0,1, , 1ru c r n    is given by,  

         
2

, 1

1
, , d ,

tn jk
j kn j k a

t t t f s w s s
i

     


   
 

   

where  ,k t   stands for the complex conjugate of 
 ,k t   and for each , , jkj k   is constant which is in-

dependent of ,t   (but does depend in general on 0t ). 
The next lemma is a form of the variation of parame-

ters formula for a general quasi-differential equation is 
given by the following Lemma. 

Lemma 4.5: Suppose  1 ,wf L a b  locally integrable 
function and  ,t   is the solution of the Equation (4.7) 
satisfying: 

   0 1,r
rt     for 20,1, , 1r n  ,  0 ,t a b  is 

given by 

     

         

2

2

2

01

0 0 0, 1

, ,

1
, , d

n

j jj

tn jk
j kj k an

t t

t t f s w s s
i

     

      








 



 
 

(4.8) 

for some constants      21 2, , , ,
n

         where 
 0,j t   and   2

0, , , 1,2, ,k t j k n    are solutions of 
the Equations (4.5) and (4.6) respectively, jk  is a con- 
stant which is independent of t . 

Proof: The proof is similar to that in [2,9,13,15,17]. 
Lemma 4.5 contains the following lemma as a special 
case. 

Lemma 4.6: Suppose  1 ,wf L a b  locally integrable 
function and  ,t   is the solution of Equation (4.7) sa- 
tisfying: 

   0 1,r
rt     for 20,1, , 1r n  ,  0 , .t a b  

Then 

         

     

     

2

2

2

01

0 0, 1

0

, ,

1
,

, d

nr r
j jj

n rjk
jj kn

t

ka

t t

t
i

t f s w s s

     

    

 









 









      (4.9) 
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for 21, , 1r n  . We refer to [20] for more details. 
Lemma 4.7: Suppose that for some 0   all solu- 

tions of the equations 

 0 01 1
0, 0

n n

j jj j
I I      

 
        (4.10) 

are in  2 , .wL a b  Then all solutions of the equations in 
(4.10) are in  2 ,wL a b  for every complex number 

.  
Proof: The proof is similar to that in [17, Theorem 

5.3]. 
Lemma 4.8: Suppose that for some complex number 

0   all solutions of the equations in (4.10) are in 
 2 , .wL a b  Suppose  2 , .wf L a b  Then all solutions of 

the equation (4.7) are in  2 ,wL a b  for all .  
Proof: The proof is similar to that in [19, Lemma 3.8]. 
Remark 4.9: Lemma 4.8 also holds if the function f  

is bounded on  ,a b . 
Lemma 4.10: Let  2 ,wf L a b . Suppose for some 

0   that:  
1) All solutions of  1

– 0
n

jj
I   


  are in 

 2 ,wL a b . 

2)     2
0, , 1, ,r

j t j n     are bounded on  ,a b  for  

some 21, , 1r n  . 
Then      2, ,r

wt L a b    for any solution  ,t    

of the equation 
1

–
n

jj
I wf  


     for all .  

Lemma 4.11: Suppose that for some complex 0    

all solutions of the equation  1
– 0

n

jj
I v 


  are in  

 2 , ,wL a c  where a c b  . Suppose  2 , ,wf L a b   

then      0, d ,
t

ka
t f s w s s   21,2, ,j n   is conti-  

nuous in  ,t   for a t b   and for all   . 
Proof: It follows from Lemma 4.8; see [18, Lemma 

3.6].  

Lemma 4.12: The point spectra  01

n

p jj
T 


 
   

and  01

n

p jj
T  


 
   of the product operators  

 01

n

jj
T 

  and  01

n

jj
T  

  are empty. 

Proof: See [17, Theorem 4.6]. 
Lemma 4.13: If  , ,I a b  with a b      

then for any   , the operator  01

n

jj
T 

  has  
closed range, zero nullity and deficiency 2n  . Hence, 

   
 01

1, 2,3

4,5

n

ek jj

k
T

k
 



      
 

   (4.11) 

Proof: The proof is similar to that in [11, Lemma 
IX.9.11]; see [17, Lemma 4.9]. 

5. The Product Operators in Direct Sum  
Spaces 

Next, we consider our interval is  ,I a b  and denote 

by  0 1 2 nT     and  1 2 nT     the minimal and 
maximal operators. We see from (3.15) and Lemma 4.2  

that      0 1 2 1 2 0 1 2n n nT T T        
         

and hence  0 1 2 nT     and  0 1 2 nT      form an 
adjoint pair of closed densely defined operators in 

 2 ,wL a b . From Lemmas 3.5 and 4.1 we have the fol-
lowing: 

Lemma 5.1: For  

   0 01 1
Π ,

n n

j jj j
T T   

 
           we have: 

1)    0 1 01 1

n nN
j p jpj j

T T  
 

          

    1 1
,

nN
p jpj

T  
      

  

   
 

0 1 01 1

1 1
.

n nN
j p jpj j

nN
p jpj

T T

T

 



   
 

 

       
    

 


 

2)  01

n

jj
null T I 


    

  
 

  
01 1

01 1 1

nN

jpp j

nN n

jrp j j

null T I

null T I

 

 

 

  

   

   

 

  
 

  

 
 

  

01

01 1

01 1 1

n

jj

nN

jpp j

nN n

jpp j j

null T I

null T I

null T I

 

 

 





 


  

  
   

   



 

  

 

3) The deficiency indices of  01

n

jj
T 

  and  

 01

n

jj
T  

  are given by: 

   
  

0 011 1

01 1 1
,

n nN

j jppj j

nN n

jpp j j

def T I def T I

def T I

   

 

 

  

        

   

 

  
 

   
  

0 011 1

01 1 1
.

n nN

j jppj j

nN n

jpp j j

def T I def T I

def T I

   

 

 
 


  

        

   

 

  
 

Lemma 5.2: For  

   0 01 1
Π ,

n n

j jj j
T T   

 
          , 

   0 01 1

n n

j jj j
def T I def T I   

 
                 

is constant and  

 
 

01

2
01

0

2 .

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

In the problem with one singular end-point, 
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2
01

2
01

2 .

n

jj

n

jj

n N def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π , .

n n

j jj j
T T   

 
            

In the regular problem, 

 
 

01

2
01

2 ,

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π , .

n n

j jj j
T T   

 
           

Proof: The proof is similar to that in [10, Lemma 2.4], 
[17] and [19] and therefore omitted. 

For    0 01 1
Π , ,

n n

j jj j
T T   

 
           we de- 

fine ,r s  and m  as follows: 

   
 

   
 

01

1 11

01

1 11

:

,

:

,

n

jj

nN N

jp pp pj

n

jj

nN N

jp pp pj

r r def T I

def T I r

s s def T I

def T I s

  

 

  

 



 





 

      
    
      

    



 



 

 (5.1) 

and 

 1

N

p pp
m r s r s


           (5.2) 

Also,  
20 2 .m n N              (5.3) 

For    0 01 1
Π ,

n n

j jj j
T T  

 
            the opera-  

tors which are regularly solvable with respect to  

 01

n

jj
T 


    and  01

n

jj
T  


 
   are characterized  

by the following theorem which proved for a general 
quasi-differential operator in [11, Theorem 10.15]. 

Theorem 5.3: For  

   0 01 1
Π , .

n n

j jj j
T T   

 
           Let ,r s  and m  

be defined by (5.1) and (5.2), and let  
 1,2, ,j j r   ,  1, ,k k r m     be arbitrary func- 

tions satisfying: 

1)    1
1, 2, ,

n

j jj
j r D T 


      are linearly 

independent modulo  1

n

jj
D T 


 
   and  

   1
1, ,

n

k jj
k r m D T  


        are linearly in-

dependent modulo  1
.

n

jj
D T  


 
   

2)    , , 0,j k j kb a             

    1, 2, , ; 1, , .j r k r m     

Then the set  

 
      

1
:

,Φ ,Φ 0, 1, , ,

n

jj

k k

u u D T

u b u a k r m




   

   




 (5.4) 

is the domain of an operator S  which is regularly 

solvable with respect to  01

n

jj
T 


 
   and  

 01

n

jj
T  


 
   and the set 

 
    

1
: ,

, , 0, 1, 2, ,

n

jj

j j

v v D T

v b v a j r



 




   

        




   (5.4) 

is the domain of the operator S ; moreover  4 S  . 
Conversely, if S  is regularly solvable with respect  

to  01

n

jj
T 


 
   and  01

n

jj
T  


 
   and  

     0 0 41 1
Π , ,

n n

j jj j
T T S   

 
            then  

with r  and s  defined by (5.1) and (5.2) there exist 
functions    1,2, , , 1, ,j kj r k r m       which 
satisfy (1) and (2) and are such that (5.4) and (5.5) are 
the domains of S  and S  respectively. 

S  is self-adjoint if, and only if,  

   1 1
,

n n

j jj j
r s  

 
    and  

 1, , ;k k r k r m       S  is J  self-adjoint if  

   1 1

n n

j jj j
J J 

 
   ( J  is a complex conjugate),  

r s  and  1, , .k k r k r m        
Proof: The proof is entirely similar to that of [11,13, 

16,18] and [19] and therefore omitted. 

6. The Case of One Singular End-Point 

We see from (3.15) and Lemma 4.2 that  

     0 01 1 1

n n n

j j jj j j
T T T  




  
              and  

hence  01

n

jj
T 


    and  01

n

jj
T  


 
   form an ad-  

joint pair of closed, closed-densely operators in  2 , .wL a b  
By Lemmas 3.1, 3.2, [10, Lemma 2.4] and [17, Lemma 
3.1], 

   0 01 1

n n

j jj j
def T I def T I   

 
   


          

is constant on the joint field of regularity  

   0 01 1
Π ,

n n

j jj j
T T  

 
          and we have that, 

 
 

2
01

2
01

2 .

n

jj

n

jj

n N def T I

def T I n N
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for all    0 01 1
Π , .

n n

j jj j
T T   

 
            

We shall use the notation 

     

   1 1

, lim ,

,

x b

n n

j jj j

u v b u v x

u D T v D T 




 



        
,   (6.1) 

if b  is a singular end-point of  ,a b , and similarly for 
  ,u v a  if a  is singular.  

Note that, it follows from (3.6) that these limits exist  

for  1

n

jj
u D T 


     and  1

n

jj
v D T  


      

since then    1

n

jj
v u

  and    1

n

jj
u v 

  are  

both integrable by Cauchy-Schwartz inequality. 
We shall now investigate in the case of one singular 

end-point that the resolvent of all well-posed extensions  

of the minimal operator  01

n

jj
T 


   , and we show  

that in the maximal case, i.e., when  

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π , ,

n n

j jj j
T T   

 
           these re-  

solvent are integral operators, in fact they are Hil-
bert-Schmidt integral operators by considering that the 
function f  be in  2 ,wL a b , i.e., is quadratically inte-
grable over the interval  , .a b  

Theorem 6.1: Suppose for an operator  

 01

n

jj
T 


    with one singular end-point that, 

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π ,

n n

j jj j
T T   

 
           and let  

S  be an arbitrary closed operator which is a well-posed  

extension of the minimal operator  01

n

jj
T 


    and  

 S  , then the resolvents R  and R
  of S  and 

S  respectively are Hilbert-Schmidt integral operators 
whose kernels are continuous functions on    , ,a b a b  
and satisfy: 

 
   

     2

, , , ,

and , , d d .
b

a

K t s K s t

K t s w s w t s t

 





 
    (6.2) 

Remark An example of a closed operator which is a 
well-posed with respect to a compatible adjoint pair is 
given by the Visik extension (see [6,7,11, Theorem 
III.3.3], [19] and [20, Theorem 1]). Note that if S is  

well-posed, then  01

n

jj
T 


    and  01

n

jj
T  


 
    

are compatible adjoint pair and S is regularly solvable  

with respect to  01

n

jj
T 


    and  01

n

jj
T  


 
  . 

Proof: Let  

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π , ,

n n

j jj j
T T   

 
           then we  

choose a fundamental system of solutions  

      21 2, , , , , ,
n N

t t t      , 

      21 2, , , , , ,
n N

t t t         of the equations, 

 
 

   

01

01

2

0,

0

, 1, , on , ,

n

j jj

n

j kj

T I

T I

j k n N a b

  

  



 


      
      








      (6.3) 

so that       21 2, , , , , ,
n N

t t t      ,  

      21 2, , , , , ,
n N

t t t         belong to  2 ,wL a b   

i.e., they are quadratically integrable in the interval 
 , .a b  Let   1

R S I     be the resolvent of any 
well-posed extension of the minimal operator  

 01
.

n

jj
T 


    For  2 ,wf L a b  we put  

   ,t R f t    then  1

n

jj
I wf  


     and con-  

sequently has a solution  ,t   in the form, 

       

       

2

2

2

0 01

0 0, 1

1
, ,

, , d ,

n N

j jj n N

tn N jk
j kj k a

t t
i

t t f s w s s

       

    






  

 
  

(6.4) 
for some constants      21 2, , ,

n N
         (see 

Lemma 4.5). Since  2 ,wf L a b  and  

   2
0., ,k wL a b    for some 0 ,   then  

   1
0., , ,k wf L a b    21, ,k n N   for some 0   

and hence the integral in the right-hand of (6.4) will be 
finite.  

To determine the constants   2, 1, , ,j j n N     let 
  2, , 1, ,k t k n N     be a basis for  

    0 1

n

jj
D S D  


 
 / , then because  

       4, ,t D S S S       we have from Theo-
rem 4.1 that, 

   

   2

, , 0,

1,2, , ,on

k kb a

k n N a b

           

 
       (6.5) 
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and hence from (6.4), (6.5) and on using Lemma 4.6, we have: 

             

     

2 2

2

2

0 01 , 1

2
1

1
, , d , ,

, , , 1, 2, , .

tn N n N jk
k j k j kj j k an N

n N

k j j kj

b t f s w s s b
i

a a k n N

          

     

  
 

 


            

       

  

 

          (6.6) 

By substituting these expressions into the conditions (6.5), we get: 

           

   

2 2

2

2

0 01 , 1

1

1
, d ,

, .

tn N n N jk
j k j kj j k an N

n N

j j kj

t f s w s s b
i

a

        

   

 
 




         

   

  


 

This implies that the system 

          2 2

2

0
01 , 1

, , d ,
b tn N n N jk

j j k kj j k aa n N
t f s w s s

i

 
       

 


                       (6.7) 

in the variable   2, 1,2, , .j j n N     The determinant of this system does not vanish (see [16, Theorem 3.27] and 
[19]). If we solve the system (6.7) we obtain: 

          2

2

0 2
, 1

, d , 1,2, , .
bn N jk

j jj k an N
h s f s w s s j n N

i

 
   




                   (6.8) 

where  ,jh s   is a solution of the system:  

      
2 2

01 , 1
, , , , .

bn N n N jk
j j k k j kj j ka

h s t b         
 

                       (6.9) 

 
Since, the determinant of the above system (6.9) does 

not vanish, and the functions  0, ,k s    
21, 2, ,k n N   are continuous in the interval  ,a b , 

then the functions  ,jh s   are also continuous in the 
interval. By substituting in formula (6.4) for the expres- 
sions   2, 1,2, ,j j n N     we get,  

 

     

       

        

2

2

2

0
0, 1

0

01

( )
, ,

, , d

, , d

n N

j jj kn N

t jk
k ja

bn N

j jj t

R f t

t t
i

t h s f s w s s

t h s f s w s s



 
     

   

  







   

  
 





 

 (6.10) 

Now, we put 

 
      

         

2

2

2

2

0
01

0
0 0, 1

, ,

, ,

for 

, , ,

for ,

n N

j jjn N

n N jk
j k jj kn N

K t s

t h s
i

t s

t t h s
i

t s



 
  

 
     






 


  

 








   (6.11) 

Formula (6.10) then takes the form 

       
 for all

, , d

, ,

b

a
R f t K t s f s w s s

t a b

 



      (6.12) 

i.e., R  is an integral operator with the kernel  , ,K s t   
operating on the functions  2 , .wf L a b  Similarly, the 
solutions  ,t   of the equation  

 1

n

jj
I wg   


     has the form: 

 

   

 
       

2

2

2

01

0

0 0, 1

,

,

, , d ,

n N

j jj

sn N jk
j kj k an N

s

s

s t g t w t t
i

 

   

 
    
















 
 (6.13) 

where  0,k t   and   2
0, , , 1,2, ,j s k j n N     are 

solutions of the equations in (6.6). The argument as be-
fore leads to, 

         2, , d o , ,f r
b

wa
R g t K s t g t w t t g L a b     

(6.14) 

i.e., R
  is an integral operator with the kernel  

 , ,K s t   operating on the functions  2 ,wg L a b  

where, 
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2

2

2

2

0

01

0

0 0, 1

, ,

, ,

for 

, , ,

for ,

n N

j jjn N

n N jk
j k jj kn N

K s t

s h t
i
s t

s t h t
i
s t



 
  

 
     



 


 


 


  





 





 (6.15) 

and  ,jh t   is a solution of the system 

  
   

2

2

1

0, 1

, ,

, , .

bn N

j j kj a

n N jk
j j kj k

h s

t b

  

    







  

    




      (6.16) 

From definitions of R  and R
 , it follows that 

            

          

 

, , , d d

, , d d

, ,

b b

a a

b b

a a

R f g K t s f s w s s g t w t t

K t s g t w t t f s w s s

f R g

















 

   

(6.17) 

for any continuous functions ,f g H  and by con-
struction (see (6.11) and (6.15)),  , ,K t s   and  

 , ,K s t   are continuous functions on    , ,a b a b  
and (6.17) gives us 

       for a, , ll, , , , ,K t s K s t t s a b a b    .  

(6.18) 

Since      2, , , ,j k wt s L a b      for  
2, 1, 2, ,j k n N   and for fixed  , , ,s K t s   is a linear 

combination of  ,j t   while, for fixed t,  
 , ,K s t   is a linear combination of  ,k s  . Then 

we have 

   

   

2

2

, , d ,

, , d , , ,

b

a

b

a

K t s w t t

K s t w s s a s t b





 

   




 

and (6.18) implies that, 

     
22

, , d ( , , ) d ,
b b

a a
K t s w s s K s t w s s      

       
2 2

, , d , , d  .
b b

a a
K s t w t t K t s w t t       

Now, it is clear from (6.9) that the functions 
   2, , 1,2, ,jh s j n N    belong to  2 ,wL a b  since 
 ,jh s   is a linear combination of the functions 
 ,j s   which lie in  2 ,wL a b  and hence  ,jh t   

belong to  2 , .wL a b  Similarly  ,jh t   belong to 
 2 , .wL a b  By the upper half of the formula (6.11) and 

(6.15), we have: 

      2
, , d d ,

b b

a a
K t s w s s w t t     

for the inner integral exists and is a linear combination of 
the products    , , ,j kt s      2, 1,2, ,j k n N   
and these products are integrable because each of the 
factors belongs to  2 , .wL a b  Then by (6.18), and by the 
upper half of (6.15), 

      

      

2

2

, , d d

, , d d .

b b

a a

b b

a a

K t s w s s w t t

K s t w s s w t t



  

 

 
 

Hence, we also have:  

     2
, , d d

b b

a a
K t s w t w s t s    ,  

and the theorem is completely proved for any well-posed 
extension. 

Remark 6.2: It follows immediately from Theorem  

6.1 that, if for an operator  01

n

jj
T 

  with one singu-  

lar end-point that  

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π ,

n n

j jj j
T T   

 
           and S is 

well-posed with respect to  01

n

jj
T 

  and  

 01

n

jj
T  

  with  S   then   1
R S I     is  

a Hilbert-Schmidt integral operator. Thus it is a com-
pletely continuous operator, and consequently its spec-
trum is discrete and consists of isolated eigenvalues hav-
ing finite algebraic (so geometric) multiplicity with zero 
as the only possible point of accumulation. Hence, the 
spectra of all well-posed operators S are discrete, i.e., 

  for, 1,2,3,4,5.ek S k            (6.19) 

We refer to [6,7,11, Theorem IX.3.1], [15], [16] and 
[18] and for more details. 

7. The Case of Two Singular End-Points  

For the case of two singular end-points, we consider our  

interval to be  ,I a b  and denote by  01

n

jj
T 

  

and  1

n

jj
T 

  the product of minimal and maximal 

operators. We see from (3.15) and Lemma 4.2 that 

     0 01 1 1

n n n

j j jj j j
T T T  




  
              and  

hence  01

n

jj
T 

  and  01

n

jj
T  

  form an adjoint  

pair of closed densely-defined operators in  2 , .wL a b  
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For    0 01 1
Π ,

n n

j jj j
T T   

 
           we define  

,r s  and m as follows: 

   
 
 

01

01

2
01

2
1 2

:

;

;

n

jj

n

jj

n

jj

r r def T I

def T a I

def T b I n N

r r n N

  

 

 







    
   
    

  






,    (7.1) 

   
 
 

01

01

2
01

2
1 2

:

;

;

,

n

jj

n

jj

n

jj

s s def T I

def T a I

def T b I n N

s s n N

  

 

 










    
   
    

  






       (7.2) 

and  

   
   
 

2 2
1 2 1 2

2
1 1 2 2

2
1 2

2

2

m r s r r n N s s n N

r s r s n N

m m n N

       

    

  

  (7.3) 

Also, since  2 22 1,2 ,in N m n N i    then by 
Lemma 5.2 we have that, 20 2 .m n N   

For an operator  01

n

jj
T 

  with two singular  

end-points, Theorem 6.1 remains true in its entirely, 
that is all well-posed extensions of the minimal operator  

 01

n

jj
T 

  in the maximal case, i.e., when  
2

1 2r r n N   and 2
1 2s s n N   in (7.1) and (7.2) 

have resolvents which are Hilbert-Schmidt integral op-
erators and consequently have a wholly spectrum, and 
hence Remark 6.2 also remains valid. This implies as in 
Corollary 7.2 below that all the regularly solvable opera-
tors have standard essential spectra to be empty. We refer 
to [1,2,6,7,10,11,15] and [16] for more details. 

Now, we prove Theorem 6.1 in the case of two singu-
lar end-points. 

Theorem 7.1: Suppose for an operator  01

n

jj
T 

  
with two singular end-points that,  

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






  
    




 

for all    0 01 1
Π ,

n n

j jj j
T T   

 
           and let S  

be an arbitrary closed operator which is a well-posed  

extension of the minimal operator  01

n

jj
T 

  and  

 S   , then the resolvent R  and R
  of S  and 

S  respectively are Hilbert-Schmidt integral operators 
whose kernels are continuous functions on    , ,a b a b  

and satisfy (6.2). 
Proof: Let,  

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π ,

n n

j jj j
T T   

 
          , then we  

choose a fundamental system of solutions 
 ,j t   and    2, , 1,2, ,j t j n N     as: 

 
   
   

 
   
   

, on ,
,

, on ,

, on ,
,

, on ,

a
j

j b
j

a
j

j b
j

t a c
t

t c b

t a c
t

t c b






 
 

 

  

 


     (7.4) 

of the equations in (6.3), so that  Φ ,j t   and  
   2, , 1,2, ,j t j n N     belong to  2 , ,wL a b  i.e., 

they are quadratically integrable in the interval (a,b). 
Let   1

R S I     be the resolvent of any well- 
posed extension a bS S S   of the minimal operator  

 01
.

n

jj
T 

  For    2 2, ,w wf L a c L c b     we put  

   ,t R f t   ,  then  1

n

jj
I wf 


      and  

hence as in (6.4) we have,  

         

       

2

2

2

0 01

0 0, 1

1
, ,

, , d ,

n N

j jj n N

tn N jk
j kj k a

R f t t t
i

t t f s w s s

      

  






     

  



 
     

(7.5) 

for some constants      21 2, , ,
n N

        where,  

 
   
   

, on ,
, .

, on ,

a

b

t a c
t

t c b






  


        (7.6) 

By proceeding as in Theorem 6.1, we get  j   as 
in (6.8),  

          2

2

0

, 1

2

, d ,

1, 2, , ,

bn N jk
j jj k an N

h s f s w s s
i

j n N

 
   








 


 

where 

 
   
   

2
, on ,

, , 1, 2, , .
, on ,

a
j

j b
j

h t a c
h t j n N

h t c b






 


  

(7.7) 

By substituting in (7.6) for the constants  j  , 
21,2, ,j n N   we get,  

         for all, , d , ,
b

a
R f t K t s f s w s s t a b    

(7.8) 
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, , on ,
, , ,

, , on ,

a

b

K t s a c
K t s

K t s c b






 


     (7.9) 

and    . , ,K t s   can be obtained as in (6.11). Similarly, 

       2( , , ) d ,fo ,r
b

wa
R g t K s t g s w s s g L a b   

   (7.10) 

 
     
     

, , on ,
, ,

, , on ,

a

b

K s t a c
K s t

K s t c b












 


 

From (6.11) and (6.15) we have that  

   

 

2

2

, , d ,

( , , ) d , , ,

b

a

b

a

K t s w t t

K s t w s s a s t b





 

   




 

and (6.18) implies that, 

       
22

, , d , , d ,
b b

a a
K t s w s s K s t w s s      

     
2 2

( , , ) d , , d .
b b

a a
K s t w t t K t s w t t       

The rest of the proof is entirely similar to the corre-
sponding part of the proof of Theorem 6.1. We refer to [1, 
5,6,7,15,16] and [18] for more details. 

Corollary 7.2: Let    0 01 1
Π ,

n n

j jj j
T T   

 
      

with 

 
 

01

2
01

.

n

jj

n

jj

def T I

def T I n N

 

 






     
      




    (7.11) 

Then,  

  for, 1, 2,3.ek S k           (7.12) 

of all regularly solvable extensions S  with respect to  

the compatible adjoint pair  01

n

jj
T 

  and  

 01
.

n

jj
T  

  

Proof: Since  

 
 

01

2
01

,

n

jj

n

jj

def T I

def T I n N

 

 






     
      




 

for all    0 01 1
Π ,

n n

j jj j
T T   

 
          . Then we  

have from [15, Theorem III.3.5] that, 

    
 

0 01

2
01

dim

,

n

jj

n

jj

D S D T

def T I n N



 





 
 

    





/
 

    
 
0 01

2
01

dim

.

n

jj

n

jj

D S D T

def T I n N



 

 





 
 

    





/
 

Thus S is an 2 dimensi al- onn N  extension of 

 01

n

jj
T 

  and so by [11, Corollary IX.4.2], 

     01
, 1, 2,3 .

n

ek ek jj
S T k  


     (7.13) 

From Lemmas 4.12 and 4.13, we get, 

   01
, 1, 2,3 .

n

ek jj
T k 


        (7.14) 

Hence, by (7.14) we have that,  

   , 1, 2,3 .ek S k     

Remark 7.3: If S is well-posed (say the Visik exten-
sion, see [20]) we get from (6.19) and (7.13) that 

   01
, 1, 2,3 .

n

ek jj
T k 


     

On applying (7.13) again to any regularly solvable ex-
tensions S under consideration, hence (7.12). 

Corollary 7.4: If for some 0 ,   there are 2n N  
linearly independent solutions of the equations 

 0 01 1
0, 0

n n

j jj j
w u w v   

 
        (7.15) 

in  2 ,wL a b ,    0 0 01 1
Π ,

n n

j jj j
T T   

 
      and  

hence,  

   0 01 1
Π ,

n n

j jj j
T T  

 
       and  

   0 01 1
, ,

n n

ek j jj j
T T   

 
       1, 2,3,k   

where    0 01 1
,

n n

ek j jj j
T T   

 
 
    is the joint es-

sential spectra of  01
,

n

jj
T 

   01

n

jj
T  

  defined 

as the joint field of regularity  

   0 01 1
Π ,

n n

j jj j
T T  

 
 
   .  

Proof: Since all solutions of the equations in (7.15) 
are in  2 ,wL a b  for some 0   in then,  

 
 

0 01

2
0 01

,

n

jj

n

jj

def T I

def T I n N

 

 






  
    




 

for some    0 0 01 1
Π ,

n n

j jj j
T T   

 
     . From Le- 

mma 3.10, we have that  01

n

jj
T 

  has no eigenval-

ues and so  
1

0 01

n

jj
T I 




    exists and its domain 

 0 01

n

jj
R T I 


    is a closed subspace of  2 , .wL a b  
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Hence, since  01

n

jj
T 

  is a closed operator, then 

 
1

0 01

n

jj
T I 




    is bounded and hence  

 01
Π .

n

jj
T 


      Similarly  01

Π
n

jj
T  


     . 

Therefore    0 01 1
Π ,

n n

j jj j
T T  

 
       and hence, 

 
 

01

2
01

n

jj

n

jj

def T I

def T I n N

 

 






  
    




 

for all    0 01 1
Π , .

n n

j jj j
T T   

 
      From Corol- 

lary 7.2 we have for any regularly solvable extension S of 

 01

n

jj
T 

  that  ek S   , 1, 2,3.k   and by (7.14) 

we get  01

n

ek jj
T 


     , 1, 2,3k  . Similarly 

 01

n

ek jj
T  


     , 1, 2,3k  . Hence,  

   0 01 1
, , 1, 2,3.

n n

ek j jj j
T T k   

 
        

Remark 7.5: If there are 2n N  linearly independent 
solutions of the Equations (7.15) in  2 ,wL a b  for some 

0   then the complex plane can be divided into two 
disjoint sets: 

   
   

0 01 1

0 01 1

Π ,

, , 1, 2,3.

n n

j jj j

n n

ek j jj j

T T

T T k

 

  


 


 

   
   

 

 


 

We refer to [6,7,10,16,18,19] for more details. 
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