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ABSTRACT

In this paper, we consider the general quasi-differential expressions 7,,7,,---,7, €ach of order n with complex coef-
ficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces Lfv(lp), p=12,---,N of
functions defined on each of the separate intervals with the cases of one and two singular end-points and when all solu-
tions of the equation [H'}:lrj —ﬂw}u =0 and its adjoint [H';:lz'j* —/Tw:|V=O are in LfN(a,b) (the limit circle
case) that all well-posed extensions of the minimal operator T,(7;,7,, :-,7,) have resolvents which are Hilbert-

Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solv-
able operators have all the standard essential spectra to be empty. These results extend those of formally symmetric ex-
pression 7 studied in [1-10] and those of general quasi-differential expressions 7 in [11-19].

Keywords: Product of Quasi-Differential Expressions; Regular and Singular Endpoints; Regularly Solvable Operators;

Essential Spectra; Hilbert-Schmidt Integral Operators

1. Introduction

The operators which fulfill the role that the self-adjoint
and maximal symmetric operators play in the case of a
formally symmetric expression 7 are those which are
regularly solvable with respect to the minimal operators
T,(r) and T, (r*) generated by a general ordinary
quasi-differential expression 7 and its formal adjoint
r" respectively, the minimal operators T,(7) and
T, (r*) form an adjoint pair of closed, densely-defined

operators in the underlying L. -space, that is

T, (7)< [TO (r* )T . Such an operator S satisfies

T,(7)cS C[TO(f)T and for some AeC, the ope-

rator (S—Al) is a Fredholm operator of zero index,

this means that S has the desirable Fredholm property
that the equation (S—Al)u=f has a solution if and
only if f is orthogonal to the solution space of
(S—A1)u=0 and furthermore the solution space of
(S=Al)u=0 and (S* — 21 )VIO have the same fi-
nite dimension. This notion was originally due to Visik
[20].

Copyright © 2013 SciRes.

Akhiezer and Glazman [1] and Naimark [2] are show-
ed that the self-adjoint extension S of the minimal op-
erator T,(7) generated by a formally symmetric dif-
ferential expression 7 with maximal deficiency indices
have resolvents which are Hilbert-Schmidt integral ope-
rators and consequently have a wholly discrete spectrum.
In [15,16,18,19] Ibrahim extend their results for general
ordinary quasi-differential expression 7z of n-th order
with complex coefficients in the singular case.

In [3,8] Everitt and Zettl considered the problem of in-
tegrable square solutions of products of differential ex-
pressions 7,,7,,---,7, and investigate the relationship
between the deficiency indices of general symmetric dif-
ferential expressions 7,,7,,--+,7, and those of the prod-

and in [17] Ibrahim considered

. n
uct expression [, 7,

the problem of the point spectra and regularity fields for
products of a general quasi-differential operators.

Our objective in this paper is a generalization of the
results in [6,7,15,16,18,19] for the product quasi-differ-

ential operators H?:ITO (7 ),HLITO (TJ*) and their spec-
tra in direct sum spaces If,v(lp), p=L2,---,N of func-
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416 S. E.-S. IBRAHIM

tions defined on each of the separate intervals with the
cases of one and two singular end-points and when all

solutions of the product equations [H?:lr o~ AW}U =0

and [H?:lr}p—ZW}V:O are in Lﬁv(lp) for some

(and hence all 1 €C . The end-points of 1, assumed to
be regular or may be singular.

We deal throughout this paper with a quasi-differential
expression 7 of arbitrary order n defined by Shin-
Zettl matrices [14], and the minimal operator T,(7) ge-
nerated by W'z[] in L, (1), where w is a positive
weight function on the underlying interval |. The end-
points a and b of | may be regular or singular end-
points.

2. Notation and Preliminaries

We begin with a brief survey of adjoint pairs of operators
and their associated regularly solvable operators; a full
treatment may be found in [2,7,11, Chapter III], [12,
15,16,18]. The domain and range of a linear operator T
acting in a Hilbert space H will be denoted by D(T)
and R(T) respectively and N(T) will denote its null
space. The nullity of T, written nul(T), is the dimen-
sion of N(T) and the deficiency of T , written
def (T), is the co-dimension of R(T) in H ; thus if
T is densely defined and R(T) is closed, then
def (T)=null (T*). The Fredholm domain of T is (in
the notation of [13]) the open subset A(T) of C
consisting of those values of A€ C which are such that
(T—Al) is a Fredholm operator, where 1 is the iden-
tity operator in H . Thus AeA,(T) if and only if
(T—A1) has closed range and finite nullity and defi-
ciency. The index of (T —Al) is the number

ind (T — A1) =nul(T — A1 )—def (T — A1), this being
defined for AeA;(T).

Two closed densely defined operators A and B ac-
ting in a Hilbert space H are said to form an adjoint
pair if Ac B* and, consequently, B < A*; equivalent-
ly, (A%, y)=(x,By) for all xeD(A) and yeD(B),
where (.,.) denotes the inner-producton H .

Definition 2.1: The field of regularity TTI(A) of A
is the set of all 1 eC for which there exists a positive
constant K(A) such that

[(A=21)x|=K(2)|x| forall xe D(A), Q.1

or, equivalently, on using the Closed Graph Theorem,
nul(A-41)=0 and R(A-Al) isclosed.

The joint field of regularity IT(A,B) of A and B
is the set of AeC which are such that AeII(A),
Z€T(B) and both def (A-Al) and def (B—11)
are finite. An adjoint pair A and B is said to be com-
patible if TI(A,B)#¢.

Definition 2.2: A closed operator S in H is said

Copyright © 2013 SciRes.

to be regularly solvable with respect to the compatible
adjoint pair of A and B if AcScB" and
II(A,B)NA,(S)#¢, where
A,(S)={2:2€A(S),ind(S-11)=0}.

Definition 2.3: The resolvent set p(S) of a closed
operator S in H consists of the complex numbers A1
for which (S—/H)_1 exists, is defined on H and is
bounded. The complement of p(S) in C is called the
spectrum of S and written o-(S) . The point spectrum
0,(S), continuous spectrum o, (S) and residual spec-
trum o, (S) are the following subsets of o(S) (see
[11,15], and [16]).

o,(8)= {/1 eo(S):(S—Al)is not injective} , i.e., the
set of eigenvalues of S ;
0.(S)={Ae€0c(S):(S~Al)is injective,

c

R(S-A1)CR(S-A1)=H;

Gr(S)
={2e0(S):(5-A1)is injective, R(S — A1) = H .

For a closed operator S we have,
o(S)=0,(S)Uo(S)Uo,(S). 2.2)

An important subset of the spectrum of a closed den-
sely defined operator S in H is the so-called essential
spectrum. The various essential spectra of S are defin-
ed as in [11, Chapter 9] to be the sets:

0, (S)=C\A(S), (k=1,2,3,4,5), 23)

where A;(S) and A,(S) have been defined earlier.

Definition 2.4: For two closed densely defined opera-
tors A and B acting in H, if AcScB” and the
resolvent set p(S) of S is nonempty (see [11,12]),
S is said to be well-posed with respectto A and B.

Note that, if AcScB" and Aep(S) then
Aell(A) and Zep(S*)cg B) so that if
def (A-41) and def(B—AI) are finite, then A
and B are compatible, in this case S is regularly sol-
vable with respect to A and B. The terminology “re-
gularly solvable” comes from Visik’s paper [20], while
the notion of “well posed” was introduced by Zhikhar in
his work on J -self adjoint operators in [21].

Given two operators A and B both acting in a Hil-
bert space H , we wish to consider the product operator

AB . This is defined as follows
D(AB)={xe D(B)Bxe D(A)} 04
and (AB)x = A(Bx) for all x & D( AB). '

It may happen in general that D(AB) contains only
the null element of H. However, in the case of many
differential operators the domains of the product will be
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densein H .

The next result gives conditions under which the defi-
ciency of a product is the sum of the deficiencies of the
factors. It is a generalization of that in [3, Theorem A]
and [8].

Lemma 2.5 (cf. [17, Lemma 2.3]). Let A and B
be closed operators with dense domains in a Hilbert
space H . Suppose that 1eII(A,B). Then AB is a
closed operator with dense domain and

def (AB—Al)=def (A-Al)+def (B-Z1).  (2.5)

Evidently Lemma 2.5 extends to the product of any fi-
nite number of operators A, A, A, .

3. Quasi-Differential Expressions in Direct
Sum Spaces

The quasi-differential expressions are defined in terms of
a Shin-Zettl matrix F, on an interval | . The set
Zn(lp) of Shin-Zettl matrices on I, consists of
nxn-matrices F, = { frf}, p=L2,---,N, whose entries
are complex-valued functions on I, which satisfy the
following conditions:

frel? (I ) (1<r,s<nn>2)

loc

fh,#0,ae,onl, (I<r<n-1)
ff=0,ae,onl,,(2<r+l<s<n),p=12,--,N.
3.
For F,eZ, ( | p) , the quasi-derivatives associated
with F, are defined by:
y=y,

" <f,pm>-‘{<w-”>’—ifrsy[s—u}, (1<ren-i),
s=1

(3.2)
where the prime ' denotes differentiation.
The quasi-differential expression 7, associated with
F, isgivenby:
7, []=i"V", (n>2), (3.3)

this being defined on the set:
V(z,)= {y Y e ac, (1,).r =1,2,-..,n},
p=12,-,N

where ACIoc( p), denotes the set of functions which
are absolutely continuous on every compact subinterval
of I,.
The formal adjoint 7,
. P i
trix F, given by:

o, []=i" yll,

of 7

, is defined by the ma-

forall yeV(r;), (3.4)

Copyright © 2013 SciRes.

V( ) {y yrl]eACIoc( ) =1,2,---,n},
p=12,---,N

where y[rr_l], the quasi-derivatives associated with the
matrix F in Zn<|p),

:( fP )+ =(=1)""" P, .., foreachrands. (3.5)

Note that: (Fp+ )+ =F, and so (r; )+ =1,. We refer
0 [3,9] and [17-20] for a full account of the above and
subsequent results on quasi-differential expressions.

For ueV(rp), VeV(r;) and a,fel,, we have

Green’s formula,

b”{\Tr ul-uz![v]idx
AT R o
:[u,v](bp)—[u,v](ap), p=12,--,N,
where,
n-1 . _—
1) =1 S 0T
r=0
v (3.7)
=iy (e g, [0
vln—l]
see [4,9] and [14-18]. Let the interval I, have end-

points a_,b and let w,:1, —>R

p>*p
be a non-negative welght function with w, € L,OC(I )
and w, >0 (foralmostall xel ). Then
H, :szp(lp) denotes the Hilbert function space of
equivalence classes of Lebesgue measurable functions
such that L Wp|f|2 <o ; the inner-product is defined
P

by:

( oo<a <b <oo)

(f.9), ::J'Ipwpf(x)
(f,g els (1,)-p=
The equation

Tp[u]—/IWpu=0 (2eC) onl

(3.8)

p) p=1)25...’N5 (3'9)

is said to be regular at the left end-point a, e R, if for
all X e(a,.b

p> P)’
a, eR,w fpeL'(a X)

p> 'rs

(r,s =12,---,n; p =1,2’...’N)'

Otherwise (3.9) is said to be singular at a,. If (3.9) is
regular at both end-points, then it is said to be regular; in
this case we have,

a,.b, e R,w,, f? el'(a,.b,).

P> lrs pp

(r,s=1,2,-,m p=1,2,---,N).

APM



418 S. E.-S. IBRAHIM

We shall be concerned with the case when a, is a
regular end-point of (3.9), the end-point b, being al-
lowed to be either regular or singular. Note that, in view
of (3.5), an end-point of I, is regular for (3.9), if and
only if it is regular for the equation,

r;[v]-Aw,v=0 (1€C) onl,, p=12,--,N, (3.10)
Note that, at a regular end-point a,, say,
ul™! (ap )(v[fl] (ap )) ,r=12,---,n is defined for all
ueV (rp) (V eV (r; )) . Set:

D(rp)::{u:UGV(rp),u and w,'r, [u]e L}, (ap,bp)},
p=12,-,N
D(T;)ZZ{VZVEV(T;),VandW;lf;;[V]ELpr (ap,bp)},
p=12,---,N.

(3.11)
The subspaces D(Tp) and D(T;) of Livp(ap,bp)

are domains of the so-called maximal operators T (z'p)
and T (r;) respectively, defined by:

T(rp)u:=wglrp[u], (ueD(rp)) and
T(r;)v::w:r; [v], (Ve D(r;))
For the regular problem the minimal operators

To(rp) and To(r; ,p=L2,---,N are the restrictions
of W'z [u] and W,'7;[v] to the subspaces:

Do(z'p):=
{u Ue D(rp),u["l](ap):u[r‘l](bp), p=1,2,---,N}

0, (7)=
{VZVE D(z;). v (a, ) =" (b, ), p:1,2,-~,N},
(3.12)
respectively. The subspaces DO(‘[p) and DO(T;) are
dense in Livp(ap,bp) and T0<rp) and TO(T;) are

closed operators (see [2,5,9, Section 3], [11,13,16]).

In the singular problem we first introduce the opera-
tors TO'(z'p) and TO'(‘[;);TO'(rp) being the restriction
of W:rp[.] to the subspace:

Dy (z, )
::{u :ueD(r,), supp(u) =(a,.b, ). p=1,2,~--,N}
(3.13)

and with TO’(r;;) defined similarly. These operators are
densely-defined and closable in I,Z,Vp(ap,bp); and we

define the minimal operators T (z'p) and T, (r;) to be

Copyright © 2013 SciRes.

their respective closures (see [12,13,16,19]). We denote
the domains of TO(Z'p and TO(Z';) by

Do(r ) and DO('[; respectively. It can be shown
that:

p

ue Do(z'p):> ul™! (ap)=0,
(r=12,---,n; p=1,2,---,N),
veD, (T;):ng] (ap) =0,

(r=12,---,m;p=12,---,N)

(3.14)

because we are assuming that a, is a regular end-point.
Moreover, in both regular and singular problems, we
have

TO*(Tp):T(T;),TO*(z'p):TO (T;), p:1,2,"~,N; (3.15)

see [8, Section 5] in the case when 7, =7, and com-
pare with treatment in [11, Section I11.10.3] and [16] in
general case.

In the case of two singular end-points, the problem on
(ap,bp) is effectively reduced to the problems with one
singular end-point on the intervals (ap,cp] and [cp,bp),

where Cpe(ap,bp). We denote by T(rp;ap) and
T (z'p;bp ) the maximal operators with domains
D(z'p;ap) and D(rp;bp) and denote To(rp;ap) and

TO(Z' ;b ) the closures of the operators TO'(T ;a ) and

PP p>%p
TO'(rp;bp) defined by:
D(;(z'p;.)
::{u:ueD(rp;.), Supp(u)c(ap,bp), p=1,2,--~,N}

(3.16)
on the intervals (ap,cp] and [C ,b ) respectively, see

p>=p
([2,5,9,11,13] and [16]). Let fo'(rp), p=12-N, be

the orthogonal sum as:
TO’(TP ) :TO’(TP a, ) @T()’(Tp;bp) in

L (ap’bp): Li/p (apscp)@ L2,Vp (Cp,bp), p=1,2,-N,

P
T, rpg is  densely-defined and
) and its closure is given by:

closable in

-|:0(‘[p):T()(Tp;ap)@-ro(z'p;bp), p=12,--,N.

0(prp;ap)—ll]+nu|l[T0(rp;bp)—/1I],

OETp;ap)—MJ+def [T (z,:b,) - 41 ]

APM
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and R[T,(z,)-A1] is closed if and only if
R[T,(rp:a,)— 41 | and R[T(7,:b,)-
closed. These results imply in particular that,
1T ()] =11[Ta (733, JN0I[Ty (7,30, |
p=12,--,N.

We refer to [11, Section 3.10.14], [16] and [18] for
more details.

Remark 3.1: If Spp is a regularly solvable extension
of T, ( ) and S, % is a regularly solvable exten-

sion of To(r b) then S=@;, (S p@S") is a re-

Al J are both

gularly solvable extension of T (7). We refer to [11,
Section 3.10.4], [16] and [18] for more details.

Next, we state the following results; the proof is simi-
lar to that in [10], [11, Section 3.10.4], [16] and [18].

Theorem 3.2: fo(rp)cTo(Tp),
T(z'p)cT (z’ ;a )(—DT (z' ;b ) and

am(o[1 (=) ]/o[. (s, })nw n

+
If AEH[ } [0 I] , then

ind[ T, (7, )- 21
=n- def[ (r a)

|| def [T, (z,5b,)-21],

and in particular, if A€ H[TO (rp )J ,
def [T, (r,)-21]
= def [T, (z,3a, )~ A1 |+ def [T, (7,:b, )= A1 |-n.

Remark 3.3: It can be shown that

D [fo (rp )] :

{u UED u[r 1]( ) O,p:1,2,---,N}
O[T ]
{v VGD "]( )= o,p:1,2,---,N};

(3.17)
see [11, Section 3.10.4].
Let H be the direct sum,

H=@) H, =o)L, (a,b,)

p=1""p

The elements of H will be denoted by
f={f,f, - fy} with feH,,
f,eH,, -, fy eH,.

Remark 3.4:

When LNl =0, i#j;i,j=12,--,N, the direct
sum space @N 1LW (ap bp) can be naturally identified

Copyright © 2013 SciRes.

2

with the space Lw(Up| p), where w,=w on I,
p = 1’29”'3
(U:::llp) , may be taken as a single interval, see [15]

and [17].
We now establish by [8,10,11,13,15] and [18] and
some further notations,

DO(T):®’[\)‘:1DO(Tp)’ D(f):(-B';:lD(rp),
Do(f):(-B’;:lDo(z';), D(T+)=('B’;:1D(T;),
T, (z’)f :{TO(TI) fl,TO(Z'z) f2,~~,T0(TN)fN};
f,eD,(7,), f, €Dy(z,), -, fy € Dy (7 )s
To(7+)g :{To<Tl+)g|>To<Tz+)gzs"'9To(T§)gN}3
9, € Do(ﬁ)agz € D, <T2+)9"'DgN € D, (Tﬁ)
Also,

T(z)f
feD

N . This remark is of significance when

(3.18)

={T(n,) f,.T(z,) £,
,eD(z,),f,eD(r,), -,

T(e)o={T(5)9.T () 9o T (w0 ) 0n |
g, € D(z’f),g2 € D(r;),---,gN € D(T,j).

We summarize a few additional properties of T (T)
in the form of a Lemma.
Lemma 3.5: We have,

D [T(e)] =el[T (s, )] —o", [T (r;)},
[TO (z’+ )T = (—B';:1 [TO (r; )T = (—B';:1 [T (Tp )J
In particular,
[T, (1)] =D[ (') ] [T(5;)
D[T0 (= )] =D[T(1)]=0)[T(z,)]
2) null[T,(r)-A1] =30 null[T,(z,)- 21 ],
nuII[TO(r*)—ZI]=Z'::lnull[T0(r;)—/Tl}
3) The deficiency indices of T(7) are given by:
def [T (z)-A1]=3" def[T,(r,)-21]
for all AEH[TO(TP)J,
def [T, ()~ 21 | =20 def [Ty (r;)- 21 ]
for all AGH[TO(T;)}.

Proof: Part (a) follows immediately from the defini-
tion of T)(z) and from the general definition of an ad-
joint operator. The other parts are either direct conse-

T(TN)fN};

fyeD(zy),
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quences of part (a) or follow immediately from the defi-
nitions.

Lemma 3.6: For e H[T0 (7)., (r* )] ,

def [TO ()1 } + def [TO (T+ ) -2l J is constant and

0 <def [T (r)—A1]+def [T,(") - 21 |<2nN .

In the problem with one singular end-point,

NN <def [T, (r)— A1 ]+ def [T, (z*) - Z1 |<2nN,

forall Ae H[T0 (7).T, (z’* )}
In the regular problem,

def [T, (z)— 21 ]+ def [T, (") 21 |= 20N,

forall e H[T0 (7).T, (z’+ )]

Proof: The proof is similar to that in [10, Lemma 2.4],
[17] and [19] and therefore omitted.

Lemma 3.7: Let T,(7)=®} T, (z'p) be a closed
densely-defined operator on H . Then,

nm()]=N5 [T ()]

Proof: The proof follows from Lemma 3.5 and since
R[T,(r)-A1] is closed if and only if R[T,(7,)-21],
p=L2,---,N are closed.

Remark 3.8: If S*,p=12,-,N is a regularly
solvable extension of T (Tp,ap) is a regularly solvable

extension of Spp then T, (z-p,bp) is regularly solvable

extension of S =®$ZI(SZ° @Sp"). We refer to [10,11,
16] and [19] for more details.

4. The Product Operators

The proof of general theorems will be based on the re-
sults in this section. We start by listing some properties
and results of quasi-differential expressions 7,,7,,":-,7, .
For proofs the reader is referred to [3,8,10,17] and [19],
and

+

(rl +12)+ :z'1++2'2+,(112'2)+ =71/,

A1)

(Ar)" =Ar" for A a complex number.

A consequence of Properties (4.1) is that if 7% =7
then (P(r))+ = P(T+) for P any polynomial with com-
plex coefficients. Also we note that the leading coeffi-
cients of a product are the product of the leading coeffi-
cients. Hence the product of regular differential expres-
sions is regular.

Lemma 4.1: (cf. [19, Theorem 1]). Suppose 7. is a
regular differential expression on the interval [a,bj and

Ae H[T0 (r,7,7,).To (7,7, 7, )ﬂ , then we have,

Copyright © 2013 SciRes.

1) The product operator H T, ( j) is closed, den-

sely-defined, and
A |=30 def [T, (7))~ 41]

def [HHTO (r,)-
def [ TT).T, ()~ 71 | =X ef [T, ()~ 71].

2) To(flfz"‘fn)gnr;:l[TO(fj)] and
T, (7,0,7,) QH?:I [To(z-j+ )J

Note in part (ii) that the containment may be proper,
i.e., the operators T,(77,---7,) and I1. [To(rj )]
are not equal in general.

Lemma 4.2: Let 7,,7,,---,7, be a regular differential
expressions on [a,b) and suppose that

Ae HI:TO (Tlrz"'rn)aTO (TITZ."Tn )+j| . Then

|:To (le-Z Ty )} = HI}:I[TO (TJ' ):|

if and only if the following partial separation conditions
are satisfied:
{f e (ab), f e AC,[a,b), where s is the order
of product expression (7,7,--7,) and (f,7,--7,)"
f el (a,b) together imply that:
-,n— 1} .

(I () £ <L (ab).k =
ng=H [ (£)] and

4.2)

(4.3)

Furthermore T, (rl z'2

To(Tlfz : Tn) = ] f and only if,
def [T, (z,7,-7,) - Al | = z [ ( ) M]
def[ 00y T, ) } > def [T, (7 )-21].

We will say that the product z,,7,,---,7, is partially
separated expressions in Lz,v(a,b) whenever Property
(4.3) holds.

Lemma 4.3: For

A e H[TO (r,7y07,). Ty (T2, 07y )ﬂ we have,

H[TO (7,7, ...rn),T0 (rlz'z T, )ﬂ
=T [T ()} [T () ]

Proof: Let A eH[ (7,27, "Z'n),TO(TlTZ"'Tn)+:|,

(4.4)

then from definition of the field of regularity we have
Ae H[ (7, )J and le H[To(rlrzmrn )ﬂ, ie.,

each of the operators T,(7,7,--7,) and T,(7,7,--7,)"
has closed range and densely-defined on H with finite
deficiency indices. Consequently by Lemma 4.2 each of

the operators [HLTO (z'j ) -l J and
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[H?ZITO (f;)—Z IJ has closed range and their defici-

ency indices are finite, i.e.,

A eH[H?:I[TO (z'j )JH?:I[TO(TJT )ﬂ . The rest of the

proof follows from definition and Lemma 4.2.

Corollary 4.4: Let z; is be a regular differential ex-
pression on [a,b) for j=1,2,---,n If all solutions of
the differential equation (7; — Al )u =0 and
(rj* —M)V:O on [a,b) arein L (a,b) for

j=12,---,n and A € C ;then all solutions of
[TT}.7-21 Ju=0 and (T}, - Z1)v=0 on
[a,b) arein Lj(ab) forall 1eC.

Proof: Let n= n, = order of z;= order of rj+ for

j=12,---,n. Then by Lemma 2.5, we have

def [T, ()~ A1 ]=def [T,(¢")~ 71 |=n

forall Ae H[TO (7)., (f )} .
Hence, by Lemma 4.1, we have,

def [TO (r7,7,) —MJ

= def [H?:ITO (rj*)—ﬂ_.l :| = Z?:l n; = n?

= order of (7,7, -7, ) = order of (7,7, -7, ).

Thus def | T, (r; T, T ) -l :L: order of (7,7, -7, )"
and consequently all solutions of the equations

[H?zlfi*MJU:O and (H?:lf;le)v=0 are in

L, (a,b). Repeating this argument with ] replaced
by z;, we conclude that all solutions of
(H'}:lrj* —21 )V:O arein L (a,b).

The special case of Corollary 4.4 when 7; =7 for
j=1,2,---,n and 7 is symmetric was established in [9].
In this case it is easy to see that the converse also holds.
If all solutions of (r” -l )u =0 arein L\ZN(Za,b) , then
all solutions of (7—Al)u=0 must be in (a,b). In
general, if all solutions of [(rlg 7, )— Al Ju=0 are
in L}, (a,b), then all solutions of (7, —A1)u=0 arein
L;,(a,b) since these are also solutions of
[(‘[12'2”"[”)—/1|:|U =0. If all solutions of the adjoint
equation [(rlrz 7)) =21 Jv: 0 arealsoin Lj(ab),
then it follows similarly that all solutions of

24 —/ﬂ)V:O arein L, (a,b).

Let o, (t,ﬂ), k=1,2,---,n* be the solutions of the

homogeneous equation

[[T}.7, -1 Ju=0 (2€C) (4.5)
satisfying (pEH] (ty,A)=36,,,, forall t,e[a,b)
(j,k:1,2,~--,n2, r:O,l,--~,n2—1) for fixed
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t,a<t, <b. Then gogr] (t,/l) is continuous in (t,ﬁ)
for a<t<b, |/1| <o, and for fixed t it is entire in A.
Let ¢ (t,4),k=12,--,n* denote the solutions of the
adjoint homogeneous equation

(HLT?—Z')WO (2€C) (4.6)

satisfying (gz)k*)[r](to,/%):(—l)k+r S . forall
t,efab) (jk=12-n" r=01--,n"-1).

Suppose a<c<b By [8], a solution of the product
equation

[H?:.Tj*i'}hwf (1€C), f el (a,b) 4.7
satisfying u[r](c)ZO, r=0,1,---,n* =1 is given by,

o(0)=( [T 5o, (A () ().

where ¢ (t,4) stands for the complex conjugate of
¢ (t,4) and for each j,k,&* is constant which is in-
dependent of t,4 (but does depend in general on t,).

The next lemma is a form of the variation of parame-
ters formula for a general quasi-differential equation is
given by the following Lemma.

Lemma 4.5: Suppose f €L, (a,b) locally integrable
function and ¢(t,4) is the solution of the Equation (4.7)
satisfying:

o'l (t),A)=a,, for r=0,1---,n*-1, t e[ab) is
given by

o(t.2)= 27, @ (2)g(t.4)
+i%(/1 _%)z??kzl(fjkwj (t’/lo )J.;‘Pl: (taﬂ'o)f (S)W(S)ds

(4.8)
for some constants ¢, (1),a,(4),,a,(4)eC, where
9;(t.4,) and ¢ (t,4),].k —1,2,---,n"are solutions of
the Equations (4.5) and (4.6) respectively, &% is a con-
stant which is independent of t .

Proof: The proof is similar to that in [2,9,13,15,17].
Lemma 4.5 contains the following lemma as a special
case.

Lemma 4.6: Suppose f €L, (a,b) locally integrable
function and ¢(t,4) is the solution of Equation (4.7) sa-
tisfying:

ol (t.A)=a,, for r=0,1,--,n*-1, t e[ab).

Then

A=Y o () (t.4,)
(A=A X S (1 4,) 4.9)
, |

x[ g (t.2)F (s)w(s)ds
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for r=1,---,n* —1. We refer to [20] for more details.
Lemma 4.7: Suppose that for some A, €C all solu-
tions of the equations

n n
|:szlrj =41 :|¢=0’ (Hj:l
are in Iﬁ,v(a,b). Then all solutions of the equations in
(4.10) are in Lj(ab) for every complex number
A1eC.

Proof: The proof is similar to that in [17, Theorem
5.3].

Lemma 4.8: Suppose that for some complex number
A, €C all solutions of the equations in (4.10) are in
L;,(a.b). Suppose f eL;(a,b). Then all solutions of
the equation (4.7) are in L; (a,b) forall 1eC.

Proof: The proof is similar to that in [19, Lemma 3.8].

Remark 4.9: Lemma 4.8 also holds if the function f
is bounded on [a,b).

Lemma 4.10: Let f eL}(ab). Suppose for some
A, €C that:

1) All solutions of (Hr;:l
L, (a,b).

2) (pgr] (t.4)), j=1---,n* are bounded on [a,b) for

some r=1---,n*—1.
Then (prr] (t,2)eL;(ab) for any solution ¢(t,2)

of the equation [H?:lrjfll}(pzwf forall 1eC.

SN )¢+ —0 (4.10)

TI—ZI)(p+=O are in

Lemma 4.11: Suppose that for some complex A4, €C
all solutions of the equation (1_[?:11-]+ — 21 )V =0 arein
L;,(a,c), where a<c<b.Suppose f el (ab),
then [ gf (t.4,)f (s)w(s)ds, j=12,

a(pk El Rt s
nuous in (t,ﬁ) for a<t<b andforall AeC.

Proof: It follows from Lemma 4.8; see [18, Lemma
3.6].

Lemma 4.12: The point spectra o, [H?:lTo(rj )J

n’> is conti-

and o, [H?:ITO (TJ* )} of the product operators

I_ILT0 (rj) and l_lr;:lT0 (rr) are empty.
Proof: See [17, Theorem 4.6].
Lemma 4.13: If 1=[ab], with —w<a<b<ow
n
then for any A € C, the operator Hj:lTO 7 ) has
closed range, zero nullity and deficiency n~ . Hence,

o (k=123)

O [H?:ITO(Tj )}Z{C (k=4,5)

Proof: The proof is similar to that in [11, Lemma
[X.9.11]; see [17, Lemma 4.9].

@.11)

5. The Product Operators in Direct Sum
Spaces

Next, we consider our interval is | =[a,b] and denote

Copyright © 2013 SciRes.

by T,(77,--7,) and T(z,7,---7,) the minimal and
maximal operators. We see from (3.15) and Lemma 4.2

that T, (rlrz~~-rn)cT(r,rz -~-Tn)C [TO (2'112 .”T”)ﬂ*

and hence T,(7,7,---7,) and To(rlz'z---rn)+ form an
adjoint pair of closed densely defined operators in
Lz,v(a,b). From Lemmas 3.5 and 4.1 we have the fol-
lowing:

Lemma5.1: For

2e [T [T (e T [T (5] wehave:
D [IT3% (=)= @0 [T (=)
=@ [HLT(%) ’
[TT5.7 (75)] = @3 [T ()
—@ [H] T(z ”,)J
2) null[ T}, To (7))~ 21|
:ZE:InUII[HLITO(TJp)—MJ
:Zgﬂ(z‘}:lnuu[]‘[?ﬁn(rjr)—/u})
nul[ TT;.,T, (75)- 21
:Zzzlnull[HllTo(r}'p)—/Tl]
= Yo (X[ TT5 T (=) - 21 )
(7

3) The deficiency indices of H T, ) and
H,:lT ( ) are given by:

def [ [T}, To(z,)- 21 |= 2, def [ [T},
=X (X e [T}, (r) -4t )
def [T} T () -21] =2 def | T, To(7}) - #1]
=30 (30 et [T (=) -71])
Lemma 5.2: For
At T[T (5 IG5
def [ [T} [T (7)) ] -2t |+ cef | T} [T ()] 71|
is constant and
0<def [ [T}.[T(z,)]-#1]
+def [ [T}, [T (77)]- 21 < 2n°N.

In the problem with one singular end-point,

T (s Jp)—,ﬂ
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+def [

forall A eH[

[()]

In the regular problem,

def | [T}, [T (7)) ]-41]
+def [H'}:I[To (TJ+ )] -1 J =20°N,
forall e H[HL [T (e) FITSL [T (fj)ﬂ

Proof: The proof is similar to that in [10, Lemma 2.4],
[17] and [19] and therefore omitted.

For ﬁeH[H?ZI[TO(rJ)],H?ZI[TO(TJ.*)H, we de-
fine r,s and m as follows:
r=r(2):=def [H” [To(rjﬂ—ﬁl}
=3 def [ [T}, T (7)) - 21 =25 ms
s=5(4):= def [H, 1[To(rj*) —ZI}
_Zp 1d8f |:H] ]T(ij)
and
m:r+s:zzzl(rp+sp) (5.2)
Also,
0<m<2n°N. (5.3)

For H[H?zl[To (rj )J,H'}:l [TO (rl+ )ﬂ # & the opera-
tors which are regularly solvable with respect to
H?;l [TO (z; )J and H?ZI[TO (rj* )] are characterized

by the following theorem which proved for a general
quasi-differential operator in [11, Theorem 10.15].
Theorem 5.3: For

/1EH[HLI[TO(Q)J,HL[TO(TJ*)H. Let r,s and m

be defined by (5.1) and (5.2), and let

v, (j=12-r), ® (k=r+1---,m) be arbitrary func-
tions satisfying:
D oy, (i=12, [ TIT<TJ):| are linearly
independent modulo D[ (z-J )J and
O, (k=r+1--,m [ . (r?)} are linearly in-
dependent modulo D[ (rr)
2 [y J(b)-[w;.@ ] (a)=0.
(j=12,,r;k=r+1---,m).

Copyright © 2013 SciRes.

Then the set
{u:u e D[HLT(Q )J
[u.0,](0)~[u.0,)(2) =0, k=r+L-,m},

is the domain of an operator S which is regularly

solvable with respect to [H?:]TO (T,- )J and
[H?ZITO (rl+ )J and the set
{V Ve D[HLT (TI )},
[wiv](0) [y, ])(@)=0. j=1.201]

is the domain of the operator S”; moreover Ae€A, (S) .
Conversely, if S is regularly solvable with respect

to [HLITO(TJ)J and [H?:lTo(rJT)J and
ﬂ’EH[H?:][TO(TJ'):|’H2:1|:T0(Tj+):|:|ﬂA4(S)’ then

with r and s defined by (5.1) and (5.2) there exist
functions ;(j=12,--,r),® (k=r+1:--,m) which
satisfy (1) and (2) and are such that (5.4) and (5.5) are
the domains of S and S respectively.

S is self-adjoint if, and only if],

H?Zl(rj ) = H?ﬂ(r; ), r=s and

O, =y, (k=r+1---,m); S is J-self-adjoint if
H?:l(rj):JH?ZI(rj)J (J 1is a complex conjugate),
r=s and ® =y, (k=r+1---,m).

Proof: The proof is entirely similar to that of [11,13,
16,18] and [19] and therefore omitted.

(5.4)

(5.4)

6. The Case of One Singular End-Point
We see from (3.15) and Lemma 4.2 that

[T [0 ()] I [T ()] =TT [T ()] and
hence HLI[TO (z-j )J and HLI[TO (rj*)} form an ad-

joint pair of closed, closed-densely operators in L, (a, b).
By Lemmas 3.1, 3.2, [10, Lemma 2.4] and [17, Lemma

3.1,
def [T} [T (7)) ] -2t |+cef [ T} [T ()] 71|

is constant on the joint field of regularity

H[H?:l [TO (rj )J,HLI [TO (rf )ﬂ and we have that,

0N <def [T [To(7,)]-41]
+def [ [T}, [T (77)]- 21 < 2n°N.
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forall Ae H[H?ZI[TO (rj )J’HL [TO (z'r )ﬂ

We shall use the notation
[u,v](b) = lirgg [u,v](x)
ue D[H?:IT (TJ- )],V IS D[H?:IT (TJ+ )J

if b is a singular end-point of [a,b), and similarly for
[u,v](a) if a issingular.
Note that, it follows from (3.6) that these limits exist

for UEDI:H?:]T(Z'J-)J and ve D[HLT(r})}
since then V(H (z ))[u] and U(H?:](r})[v]) are

both integrable by Cauchy-Schwartz inequality.
We shall now investigate in the case of one singular
end-point that the resolvent of all well-posed extensions

of the minimal operator H?:l [TO (z'j )J, and we show

, o (6.1)

that in the maximal case, i.e., when

def [H?ZI[TO (z; )J—MJ
~def [ [T}, [T ()]~ 21 |=n°N
forall 1e H[HLI [TO (z'j )J,HLI [TO (z'J* )ﬂ, these re-

solvent are integral operators, in fact they are Hil-
bert-Schmidt integral operators by considering that the
function f be in L (a,b), i.e., is quadratically inte-
grable over the interval [a,b).

Theorem 6.1: Suppose for an operator

H?:l |:T0 (z' i )} with one singular end-point that,

def [ [T}, To(z,)]- 21|
= def | [T} [T ()]~ 21 |=n°N
for all Ae H[H?:I[TO (rj )],H?ZI[TO (z’})ﬂ and let

S be an arbitrary closed operator which is a well-posed

extension of the minimal operator HL [TO (z'j )J and

A€ p(S), then the resolvents R, and R; of S and
S respectively are Hilbert-Schmidt integral operators
whose kernels are continuous functions on [a,b)x[a,b)
and satisfy:

K(t,s,4)=K"(s,t,4)

(6.2)
b 2

and [ 'K (t,5,4)] w(s)w(t)dsdt <,

Remark An example of a closed operator which is a
well-posed with respect to a compatible adjoint pair is
given by the Visik extension (see [6,7,11, Theorem
11.3.3], [19] and [20, Theorem 1]). Note that if S is
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well-posed, then HLI[TO (z'j )J and H?:I[TO (rr)]

are compatible adjoint pair and S is regularly solvable

with respect to H?:] [TO (z'j )J and H?:l |:T0 (r}' )J )

Proof: Let
def[ }
—def[]‘[ [T( )] /Tq n’N

for all 1e H|:Hr;:l|:T0 (z'j

choose a fundamental system of solutlons
{¢1 (t’ /1)#’2 (taﬂ’)a '9(0n2N (tal)} 5
{ C(tA). e (6,4), P (t,/i)} of the equations,

[H?:l[TO(Tj )J_/“J% =0,
M) -2t e =0 63
(i.k=1--,n"N)on[a,b),

sothat {g (t,4),0, (t.4), 0, (L.4)},

{ C(64),0 (LA), 00 (6 /1)} belong to L (a,b)
i.e., they are quadratlcally integrable in the interval

[a, b) Let R, =(S- ll) be the resolvent of any
well-posed extension of the minimal operator

HLI[TO (z; )J For fel}(ab) weput
p(t,2)=R,f(t) then [H?:l(rj)—}tqgo:vvf and con-
sequently has a solution ¢(t,4) in the form,

p(t.2)= 3" o) (2) gy (t.1y) + 1N (A-4,)

SN o () ol (t4)F (5)w(s)ds,
(6.4)
a,, (2)eC (see

J then we

for some constants ¢, (4),, (1),-,
Lemma 4.5). Since f €L (a,b) and
o (- 4) €Ly (ab) forsome 4, eC, then

o (-4)feL,(ab), k=1--,n°N forsome A,eC
and hence the integral in the right-hand of (6.4) will be
finite.

To determme the constants &;(4), j=1--,n’N, let
oc (t,A),k=1--,n°N beabas1s for

{D(S*)/ D, [Hj:l(r; )}} , then because

¢(t,/1) € D(S) c p(S) c
rem 4.1 that,

A,(S), we have from Theo-

(6.5)
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and hence from (6.4), (6.5) and on using Lemma 4.6, we have:

L a0 ouﬂm>aﬁwwym

[@@ym=zﬂﬁauw
(0.0 (@) =X a; ()] o). ().

(6.6)

k=1,2,---,n*N.

By substituting these expressions into the conditions (6.5), we get:

M CYREEER R S SR OB PRy

=" a (2[00 ](2)

This implies that the system

n’N + b /1_
ijl aj (i)[(pl’¢k :|a :_( inzl\?O)

in the variable a;(4), j=1,2,-,
[19]). If we solve the system (6.7) we obtain:

aj(ﬁ)z(/lin_zj’o)

) is a solution of the system:

where hj (S,/i

>N (s 2) (o)) =T e (L)

Since, the determinant of the above system (6.9) does
not vanish, and the functions ¢y (s,4,),
k=12,---,n’N are continuous in the interval [a,b),
then the functions h;(s,4) are also continuous in the
interval. By substituting in formula (6.4) for the expres-
sions @ (4),j=12,---,n°N we get,

R, f(t)
(ﬂ_/lo)

=o(t )= T e (D (4)
L[ €% 0 (tA)+h; (s.2) |1 (s)w(s)ds
(210 (A [ (52) T (s)w(s)s)|

Now, we put

K(t,s,4)
(A-4)

e an (2]
fort<s
(-4)

(e A Ay (5.2

fort>s,

(6.10)

(6.11)
Formula (6.10) then takes the form
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(S o 2 (spw(s)as). ©)

n*N. The determinant of this system does not vanish (see [16, Theorem 3.27] and

(ka”:lgik jb h,(s,2) f (s)w(s)ds), j=12,--,n’N. (6.8)

o) @0 |(b). (6.9)

R, f(t J'Kts/i)f() (s)ds
forall te[a,b),

(6.12)

i.e, R, isan integral operator with the kernel K (s,t,1)
operating on the functions f €L}, (a,b). Similarly, the
solutions @ (t,4) of the equation

[HT 1( ) /“:|(P =wg has the form:

' (s,4)
=Y e (A (s.4)
(’T_ZO) PN gk s+ ST
+ o Yiase (Sﬁflo)jag’k (t.4)g (t)w(t)dt,
(6.13)
where ¢ (t,4,) and @] (8,4).k, j=12,-,n°’N are

solutions of the equations in (6.6). The argument as be-
fore leads to,

Rig(t J' K*(s,t,/l)g() (t)dt for ge L% (ab),
(6.14)

i.e.,R; is an integral operator with the kernel
K* (S,t,/T) operating on the functions g € L, (a,b)

where,
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K+(s,t,/T)
A- Zo N
2 )(z“«p,(s%) h; (.2))
3 fors<t
) -
( inzf’)(zjk 7 (s.) (o (L) 1y (1.2))
fors >1t,
(6.15)
and hj(t,4) is a solution of the system
h (s 4)([o00])
SR e ) o

=" £ (t4) 0.0 ](b)

From definitions of R, and R7, it follows that

(R 1.0)=[[{[TK (t.5.2) £ (s)w(s)ds) o (Ew(t)a
- [ Ks gt 1 (s)w(s)as

=(f.R;9).

(6.17)
for any continuous functions f,geH and by con-
struction (see (6.11) and (6.15)), K(t,s,4) and
K* (s,t,/i) are continuous functions on [a,b)x[a,b)
and (6.17) gives us

K(t,s,4)=K" (S,t,Z) forallt,s e[a,b)x[a,b).
(6.18)

Since ¢ (t, /1) o (s.4) el (a,b) for
j,k=1,2,---,n’N and for fixed s,K(t,s,4) isa linear
combination of 9, (t,4) while, for fixed t,

K* (S t /1) is a linear combination of ¢; (s,4). Then
we have

NG
5
and (6.18) implies that,
LK (e 2] w(s)ds =[]k .t
(st ) wit)ar=" (t,s,/1)|2

Now, it is clear from (6.9) that the functions
hj(s,/i),(jzl,z,m,nzN) belong to L (a,b) since
h,(s,4) is a linear combination of the functions
@, (s,4) which lie in L} (a,b) and hence h,(t,2)
belong to L; (a,b). Similarly hy (t,2) belong to
L;, (a,b). By the upper half of the formula (6.11) and
(6.15), we have:

w(t)dt <o,

K* (s,t,ﬂT)r w(s)ds <o, a<s,t<b,

dS<oo

w(t)dt <o .

Copyright © 2013 SciRes.

Ib(ﬁK (ts.2) W(S)dS)W(t)dt <o,

for the inner integral exists and is a linear combination of
the products ¢, (t,4)e; (s,4), (j,k :1,2,~--,n2N)

and these products are integrable because each of the
factors belongs to L3 (a,b). Then by (6.18), and by the
upper half of (6.15),

J-b(jb“( (t,s,/l)|2 W(S)ds)w(t)dt
SIA(N

Hence, we also have:

K (s.t.2) w(s )ds)w(t)dt <o,

I: I:|K (t,5.4) w(t)w(s)dtds < oo,

and the theorem is completely proved for any well-posed
extension.
Remark 6.2: It follows immediately from Theorem

6.1 that, if for an operator H?leo (z’ j) with one singu-
lar end-point that

def [ [T;.[To(7,)]- 1]
:def[ IR IJ n’N
for all ﬂeH[H?:l[To(rj )],H?ZI[T()(QT)H and S is

well-posed with respect to H?:ITO (T ) and

]
[T.T,(c]) with 2ep(S) then R, =(S—a1)" is
a Hilbert-Schmidt integral operator. Thus it is a com-
pletely continuous operator, and consequently its spec-
trum is discrete and consists of isolated eigenvalues hav-
ing finite algebraic (so geometric) multiplicity with zero
as the only possible point of accumulation. Hence, the
spectra of all well-posed operators S are discrete, i.e.,

ox(S)=9, fork=1,2,34,5. (6.19)

We refer to [6,7,11, Theorem 1X.3.1], [15
[18] and for more details.

1, [16] and

7. The Case of Two Singular End-Points

For the case of two singular end-points, we consider our
. n
interval to be |=(a,b) and denote by [], T, (z;)

and H?:1T<z-j) the product of minimal and maximal
operators. We see from (3.15) and Lemma 4.2 that

[T [T (o))< TT [T (=) [T [T ()] and
hence l_[?:lT0 (z'j) and HLITO (TJ*) form an adjoint
pair of closed densely-defined operators in L, (a,b).
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For le H[H?ZI[TO (rj )J,H?ZI[TO (z'r )ﬂ we define
r,s and m as follows:
r=r(1)= def[H ( ) MJ
~ def [ [} T, (7,58) - 21| o
+def [ TT], T, (7,30)- 21 |-n*N
=r+r,—n’N
s=5(4):= def [HLTO (r})—ZIJ
= def [ [T}, To(}52)- 71 | 02
+def [ TT, T (773b) =21 |-n°N
=s,+s, —n°N,

and
m=r+s=(f+r,-n"N)+(s +s,—-n°N)
=(r+s,)+(r,+s,)-2n°N (7.3)
=(m, +m,)-2n’N

Also, since n*N<m <2n°N (i = 1,2),
Lemma 5.2 we have that, 0<m<2n’N.

For an operator Hr;leo (rj) with two singular

then by

end-points, Theorem 6.1 remains true in its entirely,
that is all well-posed extensions of the minimal operator

Hr.] T, (z'- ) in the maximal case, i.e., when
j=t 0\"j

rr=r,=n’N and s =s,=n’N in (7.1) and (7.2)
have resolvents which are Hilbert-Schmidt integral op-
erators and consequently have a wholly spectrum, and
hence Remark 6.2 also remains valid. This implies as in
Corollary 7.2 below that all the regularly solvable opera-
tors have standard essential spectra to be empty. We refer
to [1,2,6,7,10,11,15] and [16] for more details.

Now, we prove Theorem 6.1 in the case of two singu-
lar end-points.

Theorem 7.1: Suppose for an operator H T, ( )
with two singular end-points that,

def [ [T}, T (7,)-41 ]
= def [ [T}, T, ()41 [=nN
for all ﬂeH[H?:l[TO (7, )]’HLI[T"(T;)H and let S

be an arbitrary closed operator which is a well-posed

extension of the minimal operator l_Ir;:]T0 (rj) and

A€ p(S) , then the resolvent R, and R} of S and
S respectively are Hilbert-Schmidt integral operators
whose kernels are continuous functions on [a,b)x[a,b)

Copyright © 2013 SciRes.

and satisfy (6.2).
Proof: Let,
def[ (s ]
wIT, [ o ] g ] N
for all ﬂeH[ [ J then we
choose a fundamental system of solutlons
@, (t,4) and y,(t,1), (] =1 2,~-,n2N) as:
2 (t,4 a,c
0, (t.2)= @;( ) onlad]
1(t,4) on[c,b)
(7.4)
( ) l//;l (t,/i) on (a,c]
Ul (LA) onleb)

of the equations in (6. 3) so that @, (t,4) and
v, (t. /1),(]—12 ,n N) belong to L;(ab), ie,
they are quadratically integrable in the interval (a,b).

Let R, =(S—21)" be the resolvent of any well-
posed extension S =S?@®S" of the minimal operator

H?ZITO(TJ')' For fe[%(asc)@%(cyb)] we put
¢(t’/1):R/1f(t)» then [H?:I(Tj)—/il}bzwf and

hence as in (6.4) we have,

R, f (1) =0(t.4) =Y a; (2)® (Wo) ( ~2)
Z,k R0 (t4) [Looy ( t,/lo)f(s)w(s)ds,
(1.5)
for some constants ¢, (4),a, (1), SO (4)eC where,
@(t,ﬂ):{‘ba(t’ﬂ) On(a’c]. (7.6)
CDb(t,l) on[c,b)

By proceeding as in Theorem 6.1, we get «; (1) as
in (6.8),

A= 2N
()= S e O 5.0 (o)),
j=12,--,n°N,
where
he (t,4 a,c
h; (t,.4)= (t4) (a.c] j=12,---,n’N
h? (t,/i) on [C,b)
(7.7)
By substltutmg in (7.6) for the constants «;(4),
j=12,---,n°N we get,
R, f(t j K(t,s,4) f(s)w(s)ds forallte[a,b),
(7.8)
APM
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K®(t,s,4) on [C,b)’

K(t,s,/l):{K (t,s;4)  on(a,c] 79

and K" (t,s,4) can be obtained as in (6.11). Similarly,

R:g(t j K*(s,t,2)g(s)w(s)ds for g e L2 (a,b),

(7.10)
K ®(s,t,7) on(a,c
K+(S’tjz):{K+“’)Es,t,Z; onEc,b)]
From (6.11) and (6.15) we have that

jb|K t,s /1)|2W(t)dt<oo,

ds<oo a<s,t<b,

and (6.18) implies that,
J':|K(t,s,/1)|2w(s)ds =J': K*(s,t,ﬂ?)‘2 w(s)ds <o,

w(t)dt = [7]K (t.s,2)] w(t)dt <oo.

b
J
The rest of the proof is entirely similar to the corre-
sponding part of the proof of Theorem 6.1. We refer to [1,
5,6,7,15,16] and [18] for more details.
(TJ' )’Hj:lTO (TJ+ )J

Corollary 7.2: Let e H[H?:ITO

with
def [H"H[TO (v, )]—/u} o
~def | T17.[T(s)]- 71 [=n°N
Then,
0y (S)=9, fork=1,2,3. (7.12)

of all regularly solvable extensions S with respect to
the compatible adjoint pair HHTO (z'j ) and

I_ILT0 (rr)
Proof: Since
def[ m(@)]- /u}
=def[ [0 rj*)] ZI}_nN

for all 4 el'[[ ﬂ Then we

L ]»HT[

have from [15, Theorem I11.3.5] tha

/o[ }}
=def[HHT( j)-21]=n

dim {

Copyright © 2013 SciRes.

dim{D(5*)/ 0, [T (7)) ]
= et [}, (s})- 21 J=rn

Thus S is an n?N-dimensional
[15.T(7;) andsoby [11, Corollary IX.4.2],

o4 (8) =0 [T To(5)]

From Lemmas 4.12 and 4.13, we get,

Tek [HLTO (%) ﬂ =g, (k=1.2,3). (7.14)
Hence, by (7.14) we have that,
o, (8)=2, (k=12.3).

Remark 7.3: If S is well-posed (say the Visik exten-
sion, see [20]) we get from (6.19) and (7.13) that

ou [T} Ta(e)) ], (k=1.23).

On applying (7.13) again to any regularly solvable ex-
tensions S under consideration, hence (7.12).

Corollary 7.4: If for some A, € C, there are n°N
linearly independent solutions of the equations

extension of

(k=1,2,3). (7.13)

[HH 7 %W}U— (HJ] 7] Aow)v 0 (7.15)
in L, (ab), 4 EH[H?:lTo(T,— )’H?:lTo (rr)] and
hence,

[H, IT H, IT J C and

ek[HHT( DI (e)]=2. k=123

where o, [H_ TO(T-),HJ_IT()(H)J is the joint es-
sential spectra of H T( ) H T, ( +) defined
as the joint field of regularity

Iy ANy ERACH]

Proof: Since all solutions of the equations in (7.15)
arein L, (a,b) forsome A, €C in then,

def [H”,: To(r.)—zoq

—def[H T( ) J—nN
for some 4, € H[H?ZITO (rj ),HLTO (T;r )} From Le-
mma 3.10, we have that H?ZIT()(rj) has no eigenval-

4
ues and so [H?:ITO (z'j )—ﬂol} exists and its domain

R[H?:]To(z-j)—/loq is a closed subspace of L, (a,b).
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Hence, since H?:ITO (rj) is a closed operator, then
[H'}:ITO (rj )— N T is bounded and hence

N1, T(z,)|=C. similarty 1] [T}, T(})]=C.

Therefore H[H?ZITO (rj ),H?:ITO (rJ+ )J =C and hence,

def | [T}, To ()~ 21 |
= def [ [T}, T (s} )~ 71 |=n°N

for all Ae H[H?:]TO (rj )»H?:.To (z’l+ )} From Corol-
lary 7.2 we have for any regularly solvable extension S of
[T, T () that o, (S)=@,k=1,2,3. and by (7.14)

we get o, [H';:ITO (TJ- )ng , k=1,2,3 . Similarly

T [H?:ITO (TT )J =g ,k=1,2,3. Hence,

Ok [H?:]To (Tj )’H?:lTO (Z’;r ):| = @, k = 1,2,3,

Remark 7.5: If there are n*N linearly independent
solutions of the Equations (7.15) in Lﬁv(a,b) for some
A, € C then the complex plane can be divided into two
disjoint sets:

C= H[H?:1T0 (TJ- ),H?:ITO (z'J+ )J
Uoy [H?:ITO (z'j ),HLTO (TJ+ )}, k=1,2,3.

We refer to [6,7,10,16,18,19] for more details.
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